{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
hydrochlorothiazide
to a specific field?
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Status:
US Previously Marketed
Source:
MINIZIDE by PFIZER
(1980)
Source URL:
First approved in 1961
Source:
RENESE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Polythiazide is a thiazide diuretic with actions and uses similar to those of hydrochlorothiazide. Polythiazide under brand name Rense is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. Renese is indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. The mechanism of action results in an interference with the renal tubular mechanism of electrolyte reabsorption. At maximal therapeutic dosage, all thiazides are approximately equal in their diuretic potency. The mechanism whereby thiazides function in the control of hypertension is unknown, but as a diuretic, polythiazide inhibits active chloride reabsorption at the early distal tubule via the thiazide-sensitive Na-Cl cotransporter (TSC), resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like polythiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of polythiazide may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle.
Status:
US Previously Marketed
Source:
METHYCLOTHIAZIDE AND DESERPIDINE by WATSON LABS
(1984)
Source URL:
First approved in 1960
Source:
ENDURON by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Methyclothiazide, a diuretic-antihypertensive agent, is a member of the benzothiadiazine (thiazide) class of drugs. Methyclothiazide has a per mg natriuretic activity approximately 100 times that of the prototype thiazide, chlorothiazide. At maximal therapeutic dosages, all thiazides are approximately equal in their diuretic/natriuretic effects. Like other benzothiadiazines, methyclothiazide also has antihypertensive properties, and may be used for this purpose either alone or to enhance the antihypertensive action of other drugs. Methyclothiazide appears to block the active reabsorption of chloride and possibly sodium in the ascending loop of Henle, altering electrolyte transfer in the proximal tubule. This results in excretion of sodium, chloride, and water and, hence, diuresis. As a diuretic, methyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like methyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of methyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Methyclothiazide is used in the management of hypertension either as the sole therapeutic agent or to enhance the effect of other antihypertensive drugs in the more severe forms of hypertension. Also used as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy.
Status:
US Previously Marketed
Source:
NADOLOL AND BENDROFLUMETHIAZIDE by IMPAX LABS
(2007)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Bendroflumethiazide (INN), formerly bendrofluazide (BAN) is a thiazide diuretic used to treat hypertension. CORZIDE (Nadolol and Bendroflumethiazide Tablets) for oral administration combines two antihypertensive agents: CORGARD (nadolol), a nonselective beta-adrenergic blocking agent, and NATURETIN (bendroflumethiazide), a thiazide diuretic-antihypertensive. Bendroflumethiazide works by inhibiting sodium reabsorption at the beginning of the distal convoluted tubule (DCT). Bendroflumethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like bendroflumethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of bendroflumethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Thiazides do not affect normal blood pressure. Onset of action of thiazides occurs in two hours and the peak effect at about four hours. Duration of action persists for approximately six to 12 hours. Thiazides are eliminated rapidly by the kidney.