U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 16 of 16 results

Zoledronic acid (Reclast, Aclasta, Zometa) is an intravenous, highly potent amino-bisphosphonate approved worldwide, including in the USA, EU and Japan for use in patients with primary or secondary osteoporosis or low bone mass (approved indications vary between countries). Its high affinity to and long half-life in bone, and long duration of action allow for once-yearly administration, which has the potential to improve adherence to therapy. Zoledronic acid once yearly for up to 3 years improved bone mineral density (BMD) at several skeletal sites, reduced fracture risk and bone turnover, and/or preserved bone structure and mass relative to placebo in clinical studies in patients with primary or secondary osteoporosis. While additional benefits were seen when treatment was continued for up to 6 years, as evidenced by a reduced risk of vertebral fractures and higher BMD relative to 3 years’ therapy, there was the minimal advantage of treatment beyond 6 years. Therefore, in patients with low fracture risk, treatment discontinuation should be considered after approximately 5 years’ therapy. Zoledronic acid administered annually or once in 2 years was also effective in preventing bone loss in patients with low bone mass. Zoledronic acid was generally well tolerated, with the most common adverse events (AEs) being transient, mild-to-moderate post-infusion symptoms, which decreased with subsequent infusions.
Status:
US Approved OTC
Source:
21 CFR 331.11(a)(2) antacid:aluminum-containing aluminum hydroxide-magnesium trisilicate, co-dried gel
Source URL:
First marketed in 1921
Source:
Aluminum Hydroxide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Algeldrate (Aluminium hydroxide) is the amphoteric inorganic compound used as an antacid in the treatment of Duodenal, Peptic and Stomach Ulcer and some other conditions. Aluminium hydroxide is preferred over other alternatives such as sodium bicarbonate because Al(OH)3, being insoluble, does not increase the pH of stomach above 7 and hence, does not trigger secretion of excess acid by the stomach. Brand names include Alu-Cap, Aludrox, Gaviscon or Pepsamar. It reacts with the excess acid in the stomach, reducing the acidity of the stomach content, which may relieve the symptoms of ulcers, heartburn or dyspepsia. Such products can cause constipation, because the aluminum ions inhibit the contractions of smooth muscle cells in the gastrointestinal tract, slowing peristalsis and lengthening the time needed for stool to pass through the colon. Some such products (such as Maalox) are formulated to minimize such effects through the inclusion of equal concentrations of magnesium hydroxide or magnesium carbonate, which have counterbalancing laxative effects. This compound is also used to control phosphate (phosphorus) levels in the blood of people suffering from kidney failure. Precipitated aluminum hydroxide is included as an adjuvant in some vaccines (e.g. anthrax vaccine). One of the well-known brands of aluminum hydroxide adjuvant is Alhydrogel, made by Brenntag Biosector. Since it absorbs protein well, it also functions to stabilize vaccines by preventing the proteins in the vaccine from precipitating or sticking to the walls of the container during storage. Aluminium hydroxide is sometimes mistakenly called "alum", which properly refers to aluminum potassium sulfate. Vaccine formulations containing aluminum hydroxide stimulate the immune system by inducing the release of uric acid, an immunological danger signal. This strongly attracts certain types of monocytes which differentiate into dendritic cells. The dendritic cells pick up the antigen, carry it to lymph nodes, and stimulate T cells and B cells. It appears to contribute to induction of a good Th2 response, so is useful for immunizing against pathogens that are blocked by antibodies. In the 1960s and 1970s, it was speculated that aluminum was related to various neurological disorders including Alzheimer's disease. Since then, multiple epidemiological studies have found no connection between exposure to aluminum and neurological disorders.
Status:
US Previously Marketed
Source:
Strontium Bromide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strontium Bromide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Strontium ranelate is composed of an organic moiety (ranelic acid) and of two atoms of stable nonradioactive strontium. In vitro, strontium ranelate increases collagen and noncollagenic proteins synthesis by mature osteoblast enriched cells. The effects of strontium ranelate on bone formation were confirmed as strontium ranelate enhanced pre-osteoblastic cell replication. The stimulation by strontium ranelate of the replication of osteoprogenitor cell and collagen, as well as noncollagenic protein synthesis in osteoblasts, provides substantial evidence to categorize strontium ranelate as a bone-forming agent. In the isolated rat osteoclast assay, a pre-incubation of bone slices with strontium ranelate induced a dose- dependent inhibition of the bone resorbing activity of treated rat osteoclast. Strontium ranelate also dose-dependently inhibited, in a chicken bone marrow culture, the expression of both carbonic anhydrase II and the alpha-subunit of the vitronectin receptor. These effects showing that strontium ranelate significantly affects bone resorption due to a direct and/or matrix-mediated inhibition of osteoclast activity and also inhibits osteoclasts differentiation, are compatible with the profile of an anti-resorptive drug. Pharmacological and clinical studies suggest that strontium ranelate optimizes bone resorption and bone formation, resulting in increased bone mass, which may be of great value in the treatment of osteoporosis. Strontium ranelate is approved by EMA for the treatment of severe osteoporosis in postmenopausal women and in adult men.

Showing 11 - 16 of 16 results