U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 571 results

Treprostinil (marketed under the trade names Remodulin for infusion) is a vasodilator that is used for the treatment of pulmonary arterial hypertension. Pulmonary arterial hypertension (PAH) is a disease in which blood pressure is abnormally high in the arteries between the heart and lungs. PAH is characterized by symptoms of shortness of breath during physical exertion. The condition can ultimately lead to heart failure. Treprostinil is a potent oral antiplatelet agent. The major pharmacologic actions of treprostinil are direct vasodilation of pulmonary and systemic arterial vascular beds and inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. Other studies have shown that treprostinil causes a dose-related negative inotropic and lusitropic effect. No major effects on cardiac conduction have been observed. Treprostinil had high affinity for the Prostaglandin D2 receptor (DP1), Prostaglandin E2 receptor EP2 subtype (EP2) and Prostaglandin D2 receptor (IP) receptors (Ki 4.4, 3.6 and 32 nM, respectively), low affinity for EP1 and EP4 receptors and even lower affinity for EP3, Prostaglandin F (FP) and thromboxane (TP) receptors. Treprostinil has demonstrated a unique effect on PPAR gamma, a transcription factor important in vascular pathogenesis as a mediator of proliferation, inflammation and apoptosis. Through a complementary, yet cyclic AMP-independent pathway, treprostinil activates PPARs, another mechanism that contributes to the anti-growth benefits of the prostacyclin class.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Eplerenone, an aldosterone receptor antagonist similar to spironolactone, has been shown to produce sustained increases in plasma renin and serum aldosterone, consistent with inhibition of the negative regulatory feedback of aldosterone on renin secretion. The resulting increased plasma renin activity and aldosterone circulating levels do not overcome the effects of eplerenone. Eplerenone selectively binds to recombinant human mineralocorticoid receptors relative to its binding to recombinant human glucocorticoid, progesterone and androgen receptors. Eplerenone binds to the mineralocorticoid receptor and thereby blocks the binding of aldosterone (component of the renin-angiotensin-aldosterone-system, or RAAS). Aldosterone synthesis, which occurs primarily in the adrenal gland, is modulated by multiple factors, including angiotensin II and non-RAAS mediators such as adrenocorticotropic hormone (ACTH) and potassium. Aldosterone binds to mineralocorticoid receptors in both epithelial (e.g., kidney) and nonepithelial (e.g., heart, blood vessels, and brain) tissues and increases blood pressure through induction of sodium reabsorption and possibly other mechanisms. Used for improvement of survival of stable patients with left ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of congestive heart failure after an acute myocardial infarction.
Dofetilide is an antiarrhythmic drug with Class III (cardiac action potential duration prolonging) properties and is indicated for the maintenance of normal sinus rhythm. Dofetilide increases the monophasic action potential duration in a predictable, concentration-dependent manner, primarily due to delayed repolarization. At concentrations covering several orders of magnitude, Dofetilide blocks only IKr with no relevant block of the other repolarizing potassium currents (e.g., IKs, IK1). At clinically relevant concentrations, Dofetilide has no effect on sodium channels (associated with Class I effect), adrenergic alpha-receptors, or adrenergic beta-receptors. The mechanism of action of Dofetilide is a blockade of the cardiac ion channel carrying the rapid component of the delayed rectifier potassium current, IKr. This inhibition of potassium channels results in a prolongation of action potential duration and the effective refractory period of accessory pathways (both anterograde and retrograde conduction in the accessory pathway). Used for the maintenance of normal sinus rhythm (delay in time to recurrence of atrial fibrillation/atrial flutter [AF/AFl]) in patients with atrial fibrillation/atrial flutter of greater than one week duration who have been converted to normal sinus rhythm.
Candesartan is classified as an angiotensin II receptor type 1 antagonist. Candesartan is an orally active lipophilic drug and possesses rapid oral absorption. It causes a reduction in blood pressure and is used in the treatment of hypertension. It is also used in the treatment of congestive heart failure and given as prophylaxis to reduce the severity and duration of migraine. Candesartan cilexetil, a prodrug of Candesartan, is available in the market under the trade names Atacand, Amias. Candesartan cilexetil is rapidly converted to candesartan, its active metabolite, during absorption from the gastrointestinal tract. Candesartan confers blood pressure lowering effects by antagonizing the hypertensive effects of angiotensin II via the RAAS (renin–angiotensin–aldosterone system). RAAS is a homeostatic mechanism for regulating hemodynamics, water, and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from granular cells of the juxtaglomerular apparatus in the kidneys. Renin cleaves circulating angiotensinogen to angiotensin I, which is cleaved by angiotensin converting enzyme (ACE) to angiotensin II. Angiotensin II increases blood pressure by increasing total peripheral resistance, increasing sodium and water reabsorption in the kidneys via aldosterone secretion, and altering the cardiovascular structure. Angiotensin II binds to two receptors: type-1 angiotensin II receptor (AT1) and type-2 angiotensin II receptor (AT2). Candesartan selectively blocks the binding of angiotensin II to AT1 in many tissues including vascular smooth muscle and the adrenal glands. This inhibits the AT1-mediated vasoconstrictive and aldosterone-secreting effects of angiotensin II and results in an overall decrease in blood pressure. Candesartan is greater than 10,000 times more selective for AT1 than AT2.
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Irbesartan is an angiotensin receptor blocker (ARB) used mainly for the treatment of hypertension. It was developed by Sanofi Research (now part of Sanofi-Aventis). It is marketed under the trade names Aprovel, Karvea, and Avapro. AVAPRO is an angiotensin II receptor blocker (ARB) indicated for: • Treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. • Treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes, an elevated serum creatinine, and proteinuria. Irbesartan is a specific competitive antagonist of AT1 receptors with a much greater affinity (more than 8500-fold) for the AT1 receptor than for the AT2 receptor and no agonist activity.
Valsartan (DIOVAN®) is a tetrazole derivative, and specific angiotensin II type 1 (AT1) receptor blocker that is indicated for the treatment of hypertension, to lower blood pressure. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme. Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Valsartan (DIOVAN®) blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis.
Trandolapril is a non-sulhydryl prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is metabolized to its biologically active diacid form, trandolaprilat, in the liver. Trandolaprilat inhibits ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Trandolapril may be used to treat mild to moderate hypertension, to improve survival following myocardial infarction in clinically stable patients with left ventricular dysfunction, as an adjunct treatment for congestive heart failure, and to slow the rate of progression of renal disease in hypertensive individuals with diabetes mellitus and microalbuminuria or overt nephropathy. Trandolapril is marketed by Abbott Laboratories under the brand name Mavik.
Ibutilide is a 'pure' class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels. Ibutilide is indicated for the rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm. Ibutilide is marketed as Corvert by Pfizer.
Epoprostenol (marketed as FLOLAN, VELETRI) is a prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. Epoprostenol (PGI2, PGX, prostacyclin), a metabolite of arachidonic acid, is a naturally occurring prostaglandin with potent vasodilatory activity and inhibitory activity of platelet aggregation. FLOLAN (epoprostenol sodium) for Injection is a sterile sodium salt formulated for intravenous (IV) administration. Epoprostenol has two major pharmacological actions: (1) direct vasodilation of pulmonary and systemic arterial vascular beds, and (2) inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. The effect of epoprostenol on heart rate in animals varies with dose. At low doses, there is vagally mediated brudycardia, but at higher doses, epoprostenol causes reflex tachycardia in response to direct vasodilation and hypotension. No major effects on cardiac conduction have been observed. Additional pharmacologic effects of epoprostenol in animals include bronchodilation, inhibition of gastric acid secretion, and decreased gastric emptying. No available chemical assay is sufficiently sensitive and specific to assess the in vivo human pharmacokinetics of epoprostenol. FLOLAN is indicated for the long-term intravenous treatment of primary pulmonary hypertension and pulmonary hypertension associated with the scleroderma spectrum of disease in NYHA Class III and Class IV patients who do not respond adequately to conventional therapy.

Showing 11 - 20 of 571 results