U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 52 results

Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Status:
First marketed in 1921
Source:
vitamin D
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cholecalciferol (/ˌkoʊləkælˈsɪfərɒl/) (vitamin D3) is one of the five forms of vitamin D. Cholecalciferol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestation of vitamin D deficiency is rickets, which is seen in children and results in bony deformities including bowed long bones. Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet (UV) B radiation with a wavelength of 290–320 nanometers penetrates uncovered skin and converts cutaneous 7-dehydrocholesterol to previtamin D3, which in turn becomes vitamin D3. In supplements and fortified foods, vitamin D is available in two forms, D2 (ergocalciferol) and D3 (cholecalciferol) that differ chemically only in their side-chain structure. Vitamin D2 is manufactured by the UV irradiation of ergosterol in yeast, and vitamin D3 is manufactured by the irradiation of 7-dehydrocholesterol from lanolin and the chemical conversion of cholesterol. The two forms have traditionally been regarded as equivalent based on their ability to cure rickets and, indeed, most steps involved in the metabolism and actions of vitamin D2 and vitamin D3 are identical. Both forms (as well as vitamin D in foods and from cutaneous synthesis) effectively raise serum 25(OH) D levels. Firm conclusions about any different effects of these two forms of vitamin D cannot be drawn. However, it appears that at nutritional doses, vitamins D2 and D3 are equivalent, but at high doses, vitamin D2 is less potent. The American Academy of Pediatrics (AAP) recommends that exclusively and partially breastfed infants receive supplements of 400 IU/day of vitamin D shortly after birth and continue to receive these supplements until they are weaned and consume ≥1,000 mL/day of vitamin D-fortified formula or whole milk. Cholecalciferol is used in diet supplementary to treat Vitamin D Deficiency. Cholecalciferol is inactive: it is converted to its active form by two hydroxylations: the first in the liver, the second in the kidney, to form calcitriol, whose action is mediated by the vitamin D receptor, a nuclear receptor which regulates the synthesis of hundreds of enzymes and is present in virtually every cell in the body. Calcitriol increases the serum calcium concentrations by increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein.
Status:
First marketed in 1921
Source:
Acetic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Acetic acid (a component of vinagre) is used in medicine for the treatment of otitis externa caused by bacterial infections. The solution containing acetic acid was approved by FDA.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(20) weight control choline
Source URL:
First approved in 2001
Source:
Vitamin B Complex 150 by Covetrus North America
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



CHOLINE is a basic constituent of lecithin that is found in many plants and animal organs. Choline was officially recognized as an essential nutrient by the Institute of Medicine in 1998.1 Its role in the body is complex. It is needed for neurotransmitter synthesis (acetylcholine), cell-membrane signaling (phospholipids), lipid transport (lipoproteins), and methyl-group metabolism (homocysteine reduction). It is the major dietary source of methyl groups via the synthesis of S-adenosylmethionine (AdoMet). At least 50 AdoMet-dependent reactions have been identified in mammals, and it is likely that the number is much higher. Choline is required to make the phospholipids phosphatidylcholine, lysophosphatidylcholine, choline plasmalogen, and sphingomyelin—essential components for all membranes. It plays important roles in brain and memory development in the fetus and appears to decrease the risk of the development of neural tube defects. The importance of choline in the diet extends into adulthood and old age. In a study of healthy adult subjects deprived of dietary choline, 77% of the men and 80% of the postmenopausal women developed signs of subclinical organ dysfunction (fatty liver or muscle damage). Less than half of premenopausal women developed such signs. Ten percent of the subjects studied developed fatty liver, muscle damage, or both when they consumed the Adequate Intake (AI) of choline. The damage was reversed when they consumed a high-choline diet. Plasma choline concentration has been found to vary in response to diet, decreasing approximately 30 percent in humans fed a choline-deficient diet for 3 weeks. Based on estimated dietary intakes and studies reporting liver damage with lower choline intakes, the Institute of Medicine, Food and Nutrition Board set the AI for choline at 425 milligrams/per day for women aged 19 and older, and 550 milligrams/per day for men aged 19 and older.
Status:
US Previously Marketed
Source:
Inositol by Commercial Solvents
(1949)
Source URL:
First approved in 1949
Source:
Inositol by Commercial Solvents
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Inositol is a vitamin-like substance. It is found in many plants and animals. It is produced by the human body from glucose, it is not an essential nutrient. Inositol and some of its mono- and polyphosphates function as the basis for a number of signaling and secondary messenger molecules. Inositol is used for diabetic nerve pain, panic disorder, high cholesterol, insomnia, cancer, depression, schizophrenia, Alzheimer’s disease, attention deficit-hyperactivity disorder (ADHD), autism, promoting hair growth, a skin disorder called psoriasis, and treating side effects of medical treatment with lithium. Inositol is also used by mouth for treating conditions associated with polycystic ovary syndrome, including failure to ovulate; high blood pressure; high triglycerides; and high levels of testosterone. Inositol is possibly safe for most adults. It can cause nausea, tiredness, headache, and dizziness.
Status:
US Previously Marketed
Source:
Kayquinone by Abbott
(1940)
Source URL:
First approved in 1940
Source:
Kayquinone by Abbott
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Menadione, a drug belong to class of Vitamin K, is prescribed for the treatment of hemorrhage, vitamin K deficiency, moderate to severe forms of hypoprothrombinaemia in adults and children. Menadione is a synthetic form of vitamin K, a lipid-soluble vitamin. Vitamin K is a vital cofactor for the biosynthesis of prothrombin, factor VII, IX, X, protein C and protein S. Menadione supports the functions of osteocalcin. Large doses of menadione have been reported to cause adverse outcomes including hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency, neonatal brain or liver damage, or neonatal death in some rare cases.
Pantothenic acid (known as Vitamin B5) is a water-soluble member of the B-vitamin family that is converted into 4’-phosphopantetheine, which is then converted to co-enzyme A (CoA) via adenosine triphosphate. Pantothenic acid regulates epidermal barrier function and keratinocytes differentiation via CoA metabolism. Pantothenic acid is incorporated into co-enzyme A and protects cells against peroxidative damage by increasing the level of glutathione. A recent feasibility study has also shown that daily oral supplementation of a nutritional agent containing pantothenic acid for 8 weeks was feasible and safe. It was discovered the different pharmacological implementation of pantothenic acid, such as treatment of acne, obesity. Existed some reports, mentioned efficacy using pantothenic acid in systemic lupus erythematosus. Significant reduction in morning stiffness, degree of disability, and severity of pain was reported for persons taking pantothenic acid in case of osteoarthritis and rheumatoid arthritis. Vitamin B5 may increase the effects of a group of drugs called cholinesterase inhibitors, which are used to treat Alzheimer's disease. That might lead to severe side effects.
Status:
Possibly Marketed Outside US
First approved in 2022
Source:
PROTECT CARDIO AF by GIL Pharmaceutical Corp.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

Tocotrienols are a group of chemicals that are part of the vitamin E family. Tocotrienol is any of the four forms, alpha, beta, gamma and delta, of a member of the vitamin E family. It has potential hypocholesterolemic, antithrombotic, antioxidant, immunomodulating and antineoplastic activities. Tocotrienol inhibits the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, thereby lowering cholesterol levels. In addition, tocotrienol acts through multiple signal transduction pathways to induce cell cycle arrest and caspase-mediated apoptosis, and to decrease tumor cell proliferation. In addition, this agent may inhibit angiogenesis through the blockage of vascular endothelial growth factor receptor (VEGFR) and the subsequent inhibition of tumor cell-induced vessel formation. Also, this agent prevents free radical formation and inhibits lipid peroxidation, thereby preventing DNA cell damage. Tocotrienols are scare in nature. They are found most abundantly in crude palm oil extracted from palm fruits. Other sources are rice bran, wheat germ, oat and barley. These substances are available in supplement form as capsules or pills.
Status:
Possibly Marketed Outside US
Source:
NCT04539418: Phase 4 Interventional Completed Renal Disease
(2016)
Source URL:
First approved in 2022

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Menaquinone 6 (vitamin K2) is the major isoprenoid quinone found in bacterias. Menaquinone 6 plays an essential role as an electron carrier in the bacterial respiratory chain. Only small amounts of menaquinone 6 can be found in human.
Status:
Possibly Marketed Outside US
Source:
NCT00680121: Phase 4 Interventional Completed Alcoholism
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Benfotiamine is a derivative of vitamin B1. It was developed in Japan specifically to treat Korsakoff's syndrome and patented in the United States in 1962, but never became popular. It has been in use as a widely used prescription drug in Europe since 1978 to treat diabetes and is available at many vitamin shops in the United States. It has been licensed for use in Germany since 1993 under the trade name Milgamma. (Combinations with pyridoxine or cyanocobalamin are also sold under this name). It is prescribed there for treating sciatica and other painful nerve conditions. It is marketed as a medicine and/or dietary supplement, depending on the respective Regulatory Authority. Unfortunately apparent evidences from human studies are scarce and especially endpoint studies are missing. Benfotiamine has proven to affect glucose metabolic process through various mode of actions, and plays a part in obstructing age-associated glycation end products (AGEs). Benfotiamine reduces the extra biosynthesis and accumulation of a number of glucose metabolites, including glyceraldeyde-3-phosphate and dihydroxyacetone phosphate. Elevated levels of those glucose intermediates function as a trigger to most of the mechanisms accountable for hyperglycemia-caused cell damage. Benfotiamine increases tissue amounts of thiamine diphosphate, consequently growing transketolase activity and producing a significant decrease in glucose metabolites and precursors to AGEs. Up to now, two of the most effective AGE inhibitors in living microorganisms would be the Vitamin B1 derivative, benfotiamine and also the Vitamin B6 derivative, pyridoxamine. Additionally, benfotiamine has long been proven to lessen NF-kB activity, therefore restricting the over-production from the harmful superoxide toxin. Excess superoxide production may partly hinder a vital enzyme in glucose metabolic process, glyceraldehyde-3-phosphate dehydrogenase, directing glucose metabolites from glycolysis in to the major glucose-driven signaling paths that cause hyperglycemic damage. Theoretically, overdose with benfotiamine should cause menopausal flashes, bluish skin (because of rapid utilization of oxygen), tingling, and difficulty breathing, but used, this merely has not happened.

Showing 11 - 20 of 52 results