{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
chlorhexidine
to a specific field?
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
4-Chloroaniline (4-ClA) is a chlorinated aromatic amine that is formed as an intermediate during the microbial decomposition of phenylurea and phenylcarbamate. The formation of various oligomers by polymerization of 4-ClA with guaiacol in an aqueous solution containing oxidoreductases has been reported. 4-Chloroaniline is used as an intermediate in the production of
a number of products, including agricultural chemicals,
azo dyes and pigments, cosmetics, and pharmaceutical
products. Reactive metabolites of 4-Chloroaniline bind covalently to
haemoglobin and to proteins of liver and kidney. In
humans, haemoglobin adducts are detectable as early as
30 min after accidental exposure, with a maximum level
at 3 h. Repeated exposure to 4-Chloroaniline leads to cyanosis and
methaemoglobinaemia, followed by effects in blood,
liver, spleen, and kidneys, manifested as changes in
haematological parameters, splenomegaly, and moderate
to heavy haemosiderosis in spleen, liver, and kidney,
partially accompanied by extramedullary haematopoiesis. The marketing and use of products containing 4-Chloroaniline based
azo dyes were banned by the European
Union (EU) (EC, 2000).
Status:
US Approved Rx
(1976)
Source:
NDA017768
(1976)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
US Approved Rx
(1976)
Source:
NDA017768
(1976)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
US Approved Rx
(1976)
Source:
NDA017768
(1976)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
US Approved Rx
(1976)
Source:
NDA017768
(1976)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.