{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for mefenamic root_references_citation in Reference Text / Citation (approximate match)
Status:
US Approved Allergenic Extract
(1974)
Source:
BLA102223
(1974)
Source URL:
First marketed in 1921
Source:
Potassium Chlorate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Chloric(V) acid is used in chemical analysis and to make other chemicals.
Status:
US Previously Marketed
Source:
ARCAPTA NEOHALER by NOVARTIS
(2011)
Source URL:
First approved in 2011
Source:
ARCAPTA NEOHALER by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Indacaterol is an ultra-long-acting beta-adrenoceptor agonist developed by Novartis. It was approved by the European Medicines Agency (EMA) under the trade name Onbrez Breezhaler on November 30, 2009, and by the United States Food and Drug Administration (FDA), under the trade name Arcapta Neohaler, on July 1, 2011. It needs to be taken only once a day, unlike the related drugs formoterol and salmeterol. It is licensed only for the treatment of chronic obstructive pulmonary disease (COPD) (long-term data in patients with asthma are thus far lacking). It is delivered as an aerosol formulation through a dry powder inhaler.
Status:
US Previously Marketed
Source:
SKELID by SANOFI AVENTIS US
(1997)
Source URL:
First approved in 1997
Source:
SKELID by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tiludronic acid is a bisphosphonate characterized by a (4-chlorophenylthio) group on the carbon atom of the basic P-C-P structure common to all bisphosphonates. Tiludronate is a first generation (non-nitrogenous) bisphosphonate in the same family as etidronate and clodronate. Tiludronate affects calcium metabolism and inhibits bone resorption and soft tissue calcification. Of the tiludronate that is resorbed (from oral preparation) or infused (for intravenous drugs), about 50% is excreted unchanged by the kidney. The remainder has a very high affinity for bone tissue, and is rapidly absorbed onto the bone surface. Tiludronic acid is marketed under the tradename Skelid. In vitro studies indicate that tiludronate disodium acts primarily on bone through a
mechanism that involves inhibition of osteoclastic activity with a probable reduction in the
enzymatic and transport processes that lead to resorption of the mineralized matrix.
Bone resorption occurs following recruitment, activation, and polarization of osteoclasts.
Tiludronate disodium appears to inhibit osteoclasts through at least two mechanisms: disruption
of the cytoskeletal ring structure, possibly by inhibition of protein-tyrosine-phosphatase, thus
leading to detachment of osteoclasts from the bone surface and the inhibition of the osteoclastic proton pump. SKELID is indicated for treatment of Paget's disease of bone (osteitis deformans).
Status:
US Previously Marketed
Source:
DIDRONEL by MGI PHARMA INC
(1987)
Source URL:
First approved in 1977
Source:
DIDRONEL by APIL
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Etidronate is a salt of etidronic acid (brand name Didronel, also known as EHDP) a diphosphonate, which is indicated for the treatment of symptomatic Paget’s disease of bone and in the prevention and treatment of heterotopic ossification following total hip replacement or due to spinal cord injury. Didronel is not approved for the treatment of osteoporosis. This drugs acts primarily on bone. It can inhibit the formation, growth, and dissolution of hydroxyapatite crystals and their amorphous precursors by chemisorption to calcium phosphate surfaces. Inhibition of crystal resorption occurs at lower doses than are required to inhibit crystal growth. Both effects increase as the dose increases. Preclinical studies indicate etidronate disodium does not cross the blood-brain barrier. Didronel is not metabolized. The amount of drug absorbed after an oral dose is approximately 3 percent. Bisphosphonates, when attached to bone tissue, are absorbed by osteoclasts, the bone cells that breaks down bone tissue. Although the mechanism of action of non-nitrogenous bisphosphonates has not been fully elucidated, available data suggest that they bind strongly to hydroxyapatite crystals in the bone matrix, preferentially at the sites of increased bone turnover and inhibit the formation and dissolution of the crystals. Other actions may include direct inhibition of mature osteoclast function, promotion of osteoclast apoptosis, and interference with osteoblast-mediated osteoclast activation. Etidronic acid may promote osteoclast apoptosis by competing with adenosine triphosphate (ATP) in the cellular energy metabolism. The osteoclast initiates apoptosis and dies, leading to an overall decrease in the breakdown of bone.
Status:
US Previously Marketed
Source:
DIDRONEL by MGI PHARMA INC
(1987)
Source URL:
First approved in 1977
Source:
DIDRONEL by APIL
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Etidronate is a salt of etidronic acid (brand name Didronel, also known as EHDP) a diphosphonate, which is indicated for the treatment of symptomatic Paget’s disease of bone and in the prevention and treatment of heterotopic ossification following total hip replacement or due to spinal cord injury. Didronel is not approved for the treatment of osteoporosis. This drugs acts primarily on bone. It can inhibit the formation, growth, and dissolution of hydroxyapatite crystals and their amorphous precursors by chemisorption to calcium phosphate surfaces. Inhibition of crystal resorption occurs at lower doses than are required to inhibit crystal growth. Both effects increase as the dose increases. Preclinical studies indicate etidronate disodium does not cross the blood-brain barrier. Didronel is not metabolized. The amount of drug absorbed after an oral dose is approximately 3 percent. Bisphosphonates, when attached to bone tissue, are absorbed by osteoclasts, the bone cells that breaks down bone tissue. Although the mechanism of action of non-nitrogenous bisphosphonates has not been fully elucidated, available data suggest that they bind strongly to hydroxyapatite crystals in the bone matrix, preferentially at the sites of increased bone turnover and inhibit the formation and dissolution of the crystals. Other actions may include direct inhibition of mature osteoclast function, promotion of osteoclast apoptosis, and interference with osteoblast-mediated osteoclast activation. Etidronic acid may promote osteoclast apoptosis by competing with adenosine triphosphate (ATP) in the cellular energy metabolism. The osteoclast initiates apoptosis and dies, leading to an overall decrease in the breakdown of bone.
Status:
US Previously Marketed
Source:
PERCHLORACAP by MALLINCKRODT
(1974)
Source URL:
First approved in 1974
Source:
PERCHLORACAP by MALLINCKRODT
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Perchloric acid is a strong acid used for complete digestions of organic material. To prevent injury, goggles or face shield, gloves, and apron must be worn. Perchloric acid must not be mixed with any other waste and should be stored separately from the other chemicals.
Status:
US Previously Marketed
Source:
ISOPAQUE 440 by GE HEALTHCARE
(1973)
Source URL:
First approved in 1973
Source:
ISOPAQUE 440 by GE HEALTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Metrizoic acid is a diagnostic radiopaque that usually occurs as the sodium salt. The mechanism of action of metrizoic acid is as a X-Ray Contrast Activity.