{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for sulfisoxazole root_relationships_relatedSubstance_refPname in Related Substance Name (approximate match)
Status:
US Approved Rx
(2007)
Source:
NDA022044
(2007)
Source URL:
First approved in 2006
Source:
NDA021995
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sitagliptin (MK-0431), chemically (2R)-4-Oxo-4-[3- (trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin- 7(8H)-yl]-1-(2,4,5-trifl uorophenyl)butan-2-amine has a very high selectivity towards DPP-4, with an IC(50) of 18 nM. There is no affinity towards other DDP enzymes (DPP- 8 and DPP-9). It has been approved for the treatment of type 2 diabetes in the USA and Europe and is registered by the name Januvia (Merck Pharmaceuticals, Whitehouse Station, NJ, USA). In healthy volunteers and in patients with type 2 diabetes of different ethnic background, the tolerability of different doses given once or twice daily is good. The drug works to competitively inhibit a protein/enzyme, dipeptidyl peptidase 4 (DPP-4), that results in an increased amount of active incretins (GLP-1 and GIP), reduced amount of release of glucagon (diminishes its release) and increased release of insulin. Sitagliptin is an incretin enhancer and the first marketed medication belonging to the gliptin class. In fact, no published literature exists regarding incidence or severity of hypoglycemia when sitagliptin is used off-label in combined with insulin therapy. However, is recommended to use methods to avoid hypoglycemia when using this off-label combination. Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin
Status:
US Approved Rx
(2023)
Source:
ANDA211287
(2023)
Source URL:
First approved in 2004
Source:
NDA021395
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tiotropium is a long–acting, antimuscarinic agent, which is often referred to as an anticholinergic. It has similar affinity to the subtypes of muscarinic receptors, M1 to M5. In the airways, it exhibits pharmacological effects through inhibition of M3–receptors at the smooth muscle leading to bronchodilation. The competitive and reversible nature of antagonism was shown with human and animal origin receptors and isolated organ preparations. In preclinical in vitro as well as in vivo studies prevention of methacholine–induced bronchoconstriction effects were dose–dependent and lasted longer than 24 hours. The bronchodilation following inhalation of tiotropium is predominantly a site–specific effect. Tiotropium is a muscarinic receptor antagonist, often referred to as an antimuscarinic or anticholinergic agent. Although it does not display selectivity for specific muscarinic receptors, on topical application it acts mainly on M3 muscarinic receptors located in the airways to produce smooth muscle relaxation, thus producing a bronchodilatory effect. Tiotropium is used in the management of chronic obstructive pulmonary disease (COPD).Tiotropium bromide capsules for inhalation are co-promoted by Boehringer-Ingelheim and Pfizer under the trade name Spiriva. It is also manufactured and marketed by Cipla under trade name Tiova.
Status:
US Approved Rx
(2000)
Source:
NDA021014
(2000)
Source URL:
First approved in 2000
Source:
NDA021014
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Oxcarbazepine and its active metabolite (10,11-dihydro-10-hydroxy-carbazepine, MHD) have been effective in animal models of epilepsy that generally predict efficacy in generalized tonic-clonic seizures and partial seizures in humans. The pharmacokinetic profile of oxcarbazepine is less complicated than that of carbamazepine, with less metabolism by the cytochrome P450 system, no production of an epoxide metabolite, and lower plasma protein binding. The clinical efficacy and tolerability of oxcarbazepine have been demonstrated in trials in adults, children, and the elderly. The pharmacological activity of oxcarbazepine is primarily exerted through the 10-monohydroxy metabolite (MHD) of oxcarbazepine. The precise mechanism by which oxcarbazepine and MHD exert their antiseizure effect is unknown; however, in vitro electrophysiological studies indicate that they produce blockade of voltage-sensitive sodium channels, resulting in stabilization of hyperexcited neural membranes, inhibition of repetitive neuronal firing, and diminution of propagation of
synaptic impulses. These actions are thought to be important in the prevention of seizure
spread in the intact brain. In addition, increased potassium conductance and modulation of high-voltage activated calcium channels may contribute to the anticonvulsant effects of the drug.
Status:
US Approved Rx
(2024)
Source:
ANDA218770
(2024)
Source URL:
First approved in 1999
Source:
XOPENEX by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Levalbuterol is the (R)-enantiomer of the drug substance racemic albuterol (salbutamol). Binding studies have demonstrated that (R)-albuterol binds to the beta2-adrenergic receptor with a high affinity, whereas (S)-albuterol binds with 100-fold less affinity than (R)-albuterol. Other evaluations have suggested that (R)-albuterol possesses the bronchodilatory, bronchoprotective, and ciliary-stimulatory properties of racemic albuterol, while (S)-albuterol does not contribute beneficially to the therapeutic effects of the racemate and was originally assumed to be inert. Xopenex (levalbuterol HCl) Inhalation Solution is indicated for the treatment or prevention of bronchospasm in adults, adolescents, and children 6 years of age and older with reversible obstructive airway disease.
Status:
US Approved Rx
(2018)
Source:
ANDA209438
(2018)
Source URL:
First approved in 1999
Source:
NDA021087
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Oseltamivir phosphate is an ethyl ester prodrug requiring ester hydrolysis for conversion
to the active form, oseltamivir carboxylate. Oseltamivir carboxylate is an inhibitor of
influenza virus neuraminidase affecting release of viral particles. Oseltamivir is a well tolerated orally active neuraminidase inhibitor which significantly reduces the duration of symptomatic illness and hastens the return to normal levels of activity when initiated promptly in patients with naturally acquired influenza.
Status:
US Approved Rx
(2018)
Source:
ANDA209365
(2018)
Source URL:
First approved in 1998
Source:
NDA020896
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Capecitabine is a fluoropyrimidine carbamate with antineoplastic activity. It is an orally administered systemic prodrug which is converted to 5-fluorouracil (5-FU). Both normal and tumor cells metabolize 5-FU to 5-fluoro-2’-deoxyuridine monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). These metabolites cause cell injury by two different mechanisms. First, FdUMP and the folate cofactor, N5-10-methylenetetrahydrofolate, bind to thymidylate synthase (TS) to form a covalently bound ternary complex. This binding inhibits the formation of thymidylate from 2’-deoxyuridylate. Thymidylate is the necessary precursor of thymidine triphosphate, which is essential for the synthesis of DNA, so that a deficiency of this compound can inhibit cell division. Second, nuclear transcriptional enzymes can mistakenly incorporate FUTP in place of uridine triphosphate (UTP) during the synthesis of RNA. This metabolic error can interfere with RNA processing and protein synthesis. Most common adverse reactions (≥30%) were diarrhea, hand-and-foot syndrome, nausea, vomiting, abdominal pain, fatigue/weakness, and hyperbilirubinemia. The concentration of 5-fluorouracil is increased and its toxicity may be enhanced by leucovorin.
Status:
US Approved Rx
(2016)
Source:
ANDA202674
(2016)
Source URL:
First approved in 1997
Source:
NDA020639
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Quetiapine, marketed as SEROQUEL XR, is an atypical antipsychotic approved for the treatment of schizophrenia, bipolar disorder, and along with an antidepressant to treat major depressive disorder. The mechanism of action of SEROQUEL XR in the treatment of schizophrenia, bipolar disorder and major depressive disorder (MDD), is unknown. However, its efficacy in schizophrenia could be mediated through a combination of dopamine type 2 (D2) and serotonin type 2A (5HT2A) antagonism. The active metabolite, N-desalkyl quetiapine (norquetiapine), has similar activity at D2, but greater activity at 5HT2A receptors, than the parent drug (quetiapine). Quetiapine’s efficacy in bipolar depression and MDD may partly be explained by the high affinity and potent inhibitory effects that norquetiapine exhibits for the norepinephrine transporter. Antagonism at receptors other than dopamine and serotonin with similar or greater affinities may explain some of the other effects of quetiapine and norquetiapine: antagonism at histamine H1 receptors may explain the somnolence, antagonism at adrenergic α1b receptors may explain the orthostatic hypotension, and antagonism at muscarinic M1 receptors may explain the anticholinergic effects. Quetiapine and norquetiapine have affinity for multiple neurotransmitter receptors including dopamine D1 and D2, serotonin 5HT1A and 5HT2A, histamine H1, muscarinic M1, and adrenergic α1b and α2 receptors. Quetiapine differs from norquetiapine in having no appreciable affinity for muscarinic M1 receptors whereas norquetiapine has high affinity. Quetiapine and norquetiapine lack appreciable affinity for benzodiazepine receptors.
Status:
US Approved Rx
(2012)
Source:
NDA202236
(2012)
Source URL:
First approved in 1996
Source:
ASTELIN by NORVIUM BIOSCIENCE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Azelastine, a phthalazine derivative, is an antihistamine and mast cell stabilizer. Azelastine is oxidatively metabolized to the principal active metabolite, desmethylazelastine, by the cytochrome P450 enzyme system. It is indicated for the relief of the symptoms of seasonal allergic rhinitis and perennial allergic rhinitis. The most common adverse reactions are: pyrexia, dysgeusia, nasal discomfort, epistaxis, headache, sneezing, fatigue, somnolence, upper respiratory infection, cough, rhinalgia, vomiting, otitis media, contact dermatitis, and oropharyngeal pain. Concurrent use of Azelastine with alcohol or other central nervous system depressants should be avoided because reductions in alertness and impairment of central nervous system performance may occur.
Status:
US Approved Rx
(2020)
Source:
ANDA210594
(2020)
Source URL:
First approved in 1996
Source:
NDA020630
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Remifentanil (marketed by Abbott as Ultiva) is a potent ultra short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. ULTIVA is a µ-opioid agonist with rapid onset and peak effect, and short duration of action. The
µ-opioid activity of ULTIVA is antagonized by opioid antagonists such as naloxone. ULTIVA is indicated for IV administration:
1. As an analgesic agent for use during the induction and maintenance of general anesthesia for inpatient and outpatient procedures.
2. For continuation as an analgesic into the immediate postoperative period in adult patients under the direct supervision of an anesthesia practitioner in a postoperative anesthesia care unit or intensive care setting.
3. As an analgesic component of monitored anesthesia care in adult patients.
Status:
US Approved Rx
(2010)
Source:
ANDA091629
(2010)
Source URL:
First approved in 1995
Source:
NDA020386
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.