U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 181 - 190 of 216 results

Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Status:
Investigational
Source:
NCT02511613: Phase 2 Interventional Withdrawn Age-Related Macular Degeneration
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Squalamine is a steroid-polyamine conjugate compound with broad-spectrum antimicrobial activity and anti-angiogenic activity. Squalamine selectively inhibits new blood vessel formation; this activity is thought to be mediated through inhibition of the sodium-hydrogen antiporter sodium-proton exchangers (specifically the NHE3 isoform) causing inhibition of hydrogen ion efflux from endothelial cells, with subsequent reduction of cellular proliferation. Studies in tumor-bearing mice have shown that squalamine inhibits angiogenesis and tumor growth in xenograft models of lung, breast, ovarian, and prostate cancer and in brain and breast allograft tumor models in rats. Squalamine also has been shown to prevent lung metastases in the murine Lewis lung carcinoma model, both as a single agent and in combination with various other chemotherapeutics. Squalamine does not appear to have substantial direct effects on primary tumor growth in animal models when administered as a single agent. However, enhanced antitumor responses are observed when squalamine is administered in combination with cytotoxic chemotherapeutic agents when compared with cytotoxic agents used alone. Squalamine was studied as a potential cancer drug and as a potential treatment for wet macular degeneration but as of 2018 had not succeeded in Phase III trials for any use.
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

MANGANESE LACTATE is a salt of lactic acid. Manganese Lactate can be used as a dietary supplement and as a nutrient. Manganese is important in the breakdown of amino acids and the production of energy. It activates various enzymes for proper digestion and utilization of foods. Manganese also helps nourish the nerves and brain and is necessary for normal skeletal development.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

A copper fungicide.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Emoxypine (ethylmethylhydroxypyridine) succinate (MEXIDOL®) is a 3-hydroxypyridine derivative which is quite similar in structure to Vitamin B6 (pyridoxine). The most important components of the mechanism of action of Mexidol® are its antioxidant and membranotropic effects, the ability to modulate functioning of receptors and membrane-bound enzymes, restore a neurotransmitter balance. Due to its mechanism of action Mexidol® has a wide range of pharmacological effects, realized on at least two levels – neuronal and vascular. It has antihypoxic, anti-ischemic, neuroprotective, nootropic, vegetotrophic, anti-stress, anxiolytic, anticonvulsant, anti-alcohol, cardioprotective, anti-atherogenic, geroprotective and other actions. Under the action of Mexidol®, it is observed an improvement in cerebral circulation and microcirculation. Emoxypine is distributed in Russia but it is widely unknown in other regions.

Showing 181 - 190 of 216 results