{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
nonoxynol-9
to a specific field?
Status:
US Approved Rx
(2021)
Source:
NDA212156
(2021)
Source URL:
First approved in 2005
Source:
NDA021754
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Micafungin (trade name Mycamine) is an echinocandin antifungal drug. Micafungin, the active ingredient in Mycamine, inhibits the synthesis of 1,3-β-D-glucan, an essential component of fungal cell walls, which is not present in mammalian cells. Micafungin is indicated for the treatment of candidemia, acute disseminated candidiasis, Candida peritonitis, abscesses and esophageal candidiasis. Possible histamine-mediated symptoms have been reported with Mycamine, including rash, pruritus, facial swelling and vasodilatation.
Status:
US Approved Rx
(2007)
Source:
NDA022016
(2007)
Source URL:
First approved in 2005
Source:
NDA021697
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conivaptan is an arginine vasopressin (AVP) receptor antagonist with affinity for AVP receptor subtypes V1A and V2. The antidiuretic action of AVP is mediated through activation of the V2 receptor, which functions to regulate water and electrolyte balance at the level of the collecting ducts in the kidney. Conivaptan was approved in 2004 for hyponatremia caused by syndrome of inappropriate antidiuretic hormone. Conicaptan is being evaluated for reduce intracranial pressure in patients with traumatic brain injury, and as a treatment for heart failure.
Status:
US Approved Rx
(2015)
Source:
ANDA091620
(2015)
Source URL:
First approved in 2005
Source:
NDA021821
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Tigecycline (INN) is an antibiotic used to treat a number of bacterial infections. It is a first in class glycylcycline that is administered intravenously. For the treatment of infections caused by susceptible strains of the designated microorganisms in the following conditions: Complicated skin and skin structure infections caused by Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes and Bacteroides fragilis. Complicated intra-abdominal infections caused by Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros. Tigecycline, a glycylcycline, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. Tigecycline carries a glycylamido moiety attached to the 9-position of minocycline. The substitution pattern is not present in any naturally occurring or semisynthetic tetracycline and imparts certain microbiologic properties to tigecycline. In general, tigecycline is considered bacteriostatic; however, TYGACIL has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila. In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.
Status:
US Approved Rx
(2020)
Source:
ANDA213815
(2020)
Source URL:
First approved in 2005
Source:
NDA021782
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ramelteon was approved by the United States (U.S.) in July 2005, and the Japanese Ministry of Health, Labour and Welfare in April 2010. It is currently available in the USA and Japan as ROZEREM and is indicated for the treatment of insomnia characterized by difficulty with sleep onset. In October 7, 2011, Takeda has decided to discontinue the development of ramelteon in Europe for the treatment of insomnia in order to best optimize Takeda’s resources for its research and development activities. Ramelteon is a melatonin receptor agonist with both high affinity for melatonin MT1 and MT2 receptors and selectivity over the MT3 receptor. Ramelteon demonstrates full agonist activity in vitro in cells expressing human MT1 or MT2 receptors, and high selectivity for human MT1 and MT2 receptors compared to the MT3 receptor. The activity of ramelteon at the MT1 and MT2 receptors is believed to contribute to its sleep-promoting properties since these receptors are acted upon by endogenous melatonin and are thought to be involved in the maintenance of the circadian rhythm underlying normal sleep-wake cycles. Ramelteon has no appreciable affinity for the GABA receptor complex or for receptors that bind neuropeptides, cytokines, serotonin, dopamine, noradrenaline, acetylcholine, and opiates.
Status:
US Approved Rx
(2008)
Source:
NDA021822
(2008)
Source URL:
First approved in 2005
Source:
NDA021814
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tipranavir (PNU-140690, trade mark APTIVUS) is a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. Tipranavir has potent in vitro activity against a variety of HIV-1 laboratory strains and clinical isolates, including those resistant to ritonavir, as well as HIV-2.
The drug is launched in several countries, including the US and in the EU.
APTIVUS, co-administered with ritonavir, is indicated for combination antiretroviral treatment of HIV-1 infected patients who are treatment-experienced and infected
with HIV-1 strains resistant to more than one protease inhibitor.
Status:
US Approved Rx
(2005)
Source:
NDA021862
(2005)
Source URL:
First approved in 2005
Source:
NDA021862
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amfenac (AHR 5850) is a non-steroidal anti-inflammatory compound possessing antipyretic and analgesic properties. It is an inhibitor of cyclooxygenases. Amfenac sodium has been on the Japanese market since 1986 (as FENAZOX®, Meiji) in an oral dosage form (50 mg, four-times-daily) indicated for the treatment of pain and inflammation associated with rheumatoid and osteoarthritis and low back pain, as well as the treatment of pain and inflammation following surgery, injury or tooth extraction. Amfenac is an active moiety of nepafenac (amfenac amide), the prodrug has very weak cyclooxygenase inhibitory activity whereas amfenac exhibits more potent cyclooxygenase activity. Nepafenac at a concentration of 0.1% (NEVANAC) was approved for marketing in the US in 2005. Nepafenac is also approved for marketing in the European Union(EU) and Japan as well as over 60 other countries for the treatment of postoperative pain and inflammation associated with cataract surgery.
Status:
US Approved Rx
(2024)
Source:
ANDA216948
(2024)
Source URL:
First approved in 2005
Source:
NDA021877
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Arranon is a nucleoside metabolic inhibitor indicated for the treatment of patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. It is a purine nucleoside analog converted to its corresponding arabinosylguanine nucleotide triphosphate (araGTP), resulting in inhibition of DNA synthesis and cytotoxicity. Administration of nelarabine in combination with adenosine deaminase inhibitors, such 195 as pentostatin, is not recommended. The most common (≥20%) adverse reactions were: anemia, thrombocytopenia, neutropenia, nausea, diarrhea, vomiting, constipation, fatigue, pyrexia, cough, and dyspnea
Status:
US Approved Rx
(2015)
Source:
ANDA206217
(2015)
Source URL:
First approved in 2005
Source:
NDA021798
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
BARACLUDE® is the tradename for entecavir, a guanosine nucleoside analogue with selective activity against hepatitis B virus (HBV). It inhibits all three steps in the viral replication process. By competing with the natural substrate deoxyguanosine triphosphate, entecavir functionally inhibits all three activities of the HBV polymerase (reverse transcriptase, rt): (1) base priming, (2) reverse transcription of the negative strand from the pregenomic messenger RNA, and (3) synthesis of the positive strand of HBV DNA. Upon activation by kinases, the drug can be incorporated into the DNA which has the ultimate effect of inhibiting the HBV polymerase activity. Entecavir is used for the treatment of chronic hepatitis B virus infection in adults with evidence of active viral replication and either evidence of persistent elevations in serum aminotransferases (ALT or AST) or histologically active disease.
Status:
US Approved Rx
(2019)
Source:
ANDA212034
(2019)
Source URL:
First approved in 2004
Source:
NDA021673
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Clofarabine is a anti-cancer drug which was approved by FDA for the treatment of pediatric patients with relapsed or refractory acute lymphoblastic leukemia. After crossing the cell membrane the drug is rapidly metabolized by deoxycytidine kinase to diphosphate and triphosphate metabolites and these metabolites reversibly inhibit hRNR by binding to alpha subunit. Also the triphosphate is incorporated to DNA where it acts as a chain terminator.
Status:
US Approved Rx
(2017)
Source:
NDA208587
(2017)
Source URL:
First approved in 2004
Source:
NUTRESTORE by EMMAUS MEDCL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Glutamine is a non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from glutamic acid and ammonia. It is the principal carrier of nitrogen in the body and is an important energy source for many cells. Supplemental L-glutamine's possible immunomodulatory role may be accounted for in a number of ways. L-glutamine appears to play a major role in protecting the integrity of the gastrointestinal tract and, in particular, the large intestine. During catabolic states, the integrity of the intestinal mucosa may be compromised with consequent increased intestinal permeability and translocation of Gram-negative bacteria from the large intestine into the body. The demand for L-glutamine by the intestine, as well as by cells such as lymphocytes, appears to be much greater than that supplied by skeletal muscle, the major storage tissue for L-glutamine. L-glutamine is the preferred respiratory fuel for enterocytes, colonocytes and lymphocytes. Therefore, supplying supplemental L-glutamine under these conditions may do a number of things. For one, it may reverse the catabolic state by sparing skeletal muscle L-glutamine. It also may inhibit translocation of Gram-negative bacteria from the large intestine. L-glutamine helps maintain secretory IgA, which functions primarily by preventing the attachment of bacteria to mucosal cells. L-glutamine appears to be required to support the proliferation of mitogen-stimulated lymphocytes, as well as the production of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). It is also required for the maintenance of lymphokine-activated killer cells (LAK). L-glutamine can enhance phagocytosis by neutrophils and monocytes. It can lead to an increased synthesis of glutathione in the intestine, which may also play a role in maintaining the integrity of the intestinal mucosa by ameliorating oxidative stress. The exact mechanism of the possible immunomodulatory action of supplemental L-glutamine, however, remains unclear. It is conceivable that the major effect of L-glutamine occurs at the level of the intestine. Perhaps enteral L-glutamine acts directly on intestine-associated lymphoid tissue and stimulates overall immune function by that mechanism, without passing beyond the splanchnic bed. Glutamine is used for nutritional supplementation, also for treating dietary shortage or imbalance.