U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 171 - 180 of 4352 results

Clindamycin phosphate is the prodrug of clindamycin with no antimicrobial activity in vitro but can be rapidly converted in vivo to the parent drug, clindamycin, by phosphatase ester hydrolysis. It is indicated in the treatment of serious infections caused by susceptible anaerobic bacteria: Lower respiratory tract infections including pneumonia, empyema, and lung abscess caused by anaerobes; Skin and skin structure infections; Gynecological infections including endometritis, nongonococcal tubo-ovarian abscess, pelvic cellulitis, and postsurgical vaginal cuff infection caused by susceptible anaerobes; Intra-abdominal infections; Septicemia; Bone and joint infections. Orally and parenterally administered clindamycin has been associated with severe colitis, which may end fatally. Abdominal pain, gastrointestinal disturbances, gram-negative folliculitis, eye pain and contact dermatitis have also been reported in association with the use of topical formulations of clindamycin. Clindamycin has been shown to have neuromuscular blocking properties that may enhance the action of other neuromuscular blocking agents
Floxuridine is a pyrimidine analog that acts as an inhibitor of the S-phase of cell division. This selectively kills rapidly dividing cells. Floxuridine is an anti-metabolite. Anti-metabolites masquerade as pyramidine-like molecules which prevents normal pyrimidines from being incorporated into DNA during the S phase of the cell cycle. Flurouracil (the end-product of catabolism of floxuridine) blocks an enzyme which converts cytosine nucleosides into the deoxy derivative. In addition, DNA synthesis is further inhibited because fluoruracil blocks the incorporation of the thymdine nucleotide into the DNA strand. Floxuridine is used for palliative management of gastrointestinal adenocarcinoma metastatic to the liver, when given by continuous regional intra-arterial infusion in carefully selected patients who are considered incurable by surgery or other means. Also for the palliative management of liver cancer (usually administered by hepatic intra-arterial infusion).Floxuridine first gained FDA approval in December 1970 under the brand name FUDR. The drug was initially marketed by Roche, which also did a lot of the initial work on 5-fluorouracil. The National Cancer Institute was an early developer of the drug. Roche sold its FUDR product line in 2001 to F H Faulding, which became Mayne Pharma.
Status:
First approved in 1969

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Prilocaine is a local anesthetic that is similar pharmacologically to lidocaine. Prilocaine binds to the intracellular surface of sodium channels which blocks the subsequent influx of sodium into the cell. Action potential propagation and never function is, therefore, prevented. This block is reversible and when the drug diffuses away from the cell, sodium channel function is restored and nerve propagation returns. Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Currently, Prilocaine is used most often for infiltration anesthesia in dentistry.
Nortriptyline is a second-generation tricyclic antidepressant (TCA) marketed as the hydrochloride salt under the trade names Sensoval, Aventyl, Pamelor, Norpress, Allegron, Noritren and Nortrilen. Nortriptyline is used in the treatment of depression and childhood nocturnal enuresis. Its off-label uses include treatment of postherpetic neuralgia, angioedema and smoking Cessation, and attention deficit hyperactivity disorder in some neurological disorders. It is believed that nortriptyline either inhibits the reuptake of the neurotransmitter serotonin at the neuronal membrane or acts at beta-adrenergic receptors. Nortriptyline is US FDA-approved for the treatment of major depression. In the United Kingdom, it may also be used for treating nocturnal enuresis, with courses of treatment lasting no more than three months. The most common side effects include dry mouth, sedation, constipation, and increased appetite, mild blurred vision, tinnitus, occasionally hypomania or mania. An occasional side effect is a rapid or irregular heartbeat. Alcohol may exacerbate some of its side effects. However, fewer and milder side effects occur with nortriptyline than tertiary tricyclic antidepressants such as imipramine and amitriptyline. For this reason, nortriptyline is preferred to other tricyclic antidepressants, particularly with older adults, which also improves compliance.
Dactinomycin (actinomycin D) was isolated from Streptomyces by Selman Waksman in 1940s. The antibiotic shows anti-cancer activity; it was approved by FDA for the treatment of different cancer conditions among which are Ewing's sarcoma, Wilm's tumor, gestational trophoblastic disease, etc. Dactinomycin exerts its action by binding to DNA (preferably to GC motif) and thus inhibiting transcription.
Triamterene, a relatively weak, potassium-sparing diuretic and antihypertensive, is used in the management of hypokalemia. Triamterene inhibits the epithelial sodium channels on principal cells in the late distal convoluted tubule and collecting tubule, which are responsible for 1-2% of total sodium reabsorption. As sodium reabsorption is inhibited, this increases the osmolarity in the nephron lumen and decreases the osmolarity of the interstitium. Since sodium concentration is the main driving force for water reabsorption, triamterene can achieve a modest amount of diuresis by decreasing the osmotic gradient necessary for water reabsorption from lumen to interstitium. Triamterene also has a potassium-sparing effect. Normally, the process of potassium excretion is driven by the electrochemical gradient produced by sodium reabsorption. As sodium is reabsorbed, it leaves a negative potential in the lumen, while producing a positive potential in the principal cell. This potential promotes potassium excretion through apical potassium channels. By inhibiting sodium reabsorption, triamterene also inhibits potassium excretion.Triamterene is used for the treatment of edema associated with congestive heart failure, cirrhosis of the liver, and the nephrotic syndrome; also in steroid-induced edema, idiopathic edema, and edema due to secondary hyperaldosteronism. Triamterene is maeketed under the trade name Dyrenium.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)

The selenite anion is a selenium oxoanion with the chemical formula SeO2−3. A selenite (Se) is a compound that contains this ion. Sodium selenite is an inorganic form of the trace element selenium with potential antineoplastic activity. It was documented that Se deficiency observed in some countries and/or geographic regions (e.g. Keshan region in China), is associated with an increased morbidity and mortality of neoplastic diseases. To correct this problem a number of organic and inorganic selenium compounds were developed and tested. However, it is now firmly established that only an inorganic sodium selenite with four-valent Se, and not that with six-valent (selenate) cation shows anticancer activity. Selenite can undergo redox reaction, for example with protein's sulfhydryl groups expressed on the surface of tumor cells. In this way selenite prevents non-enzymatic formation of parafibrin that coats tumors cells and hence presents them as 'self' to the innate cellular immune system. Consequently, macrophages of the lymphatic system do not recognize neoplastic cells as 'foreign' bodies and spare them from the immune destruction. Sodium selenite also showed promise as a cost-effective, nontoxic anti-inflammatory agent. Treatment with sodium selenite lowers reactive oxygen species (ROS) production, causes a spontaneous reduction in lymphedema volume, increases the efficacy of physical therapy for lymphedema, and reduces the incidence of erysipelas infections in patients with chronic lymphedema. Limited evidence has been presented though that intakes of selenium greater than the amount needed to allow full expression of selenoproteins may have chemopreventive effects against cancer. Controlled intervention studies are needed to fully evaluate selenium as a cancer chemopreventive agent. The US Food and Drug Administration approved a selenium supplement to animal diets; the most common form is sodium selenite for pet foods.
Status:
First approved in 1964

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.