{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for alpha root_names_stdName in Standardized Name (approximate match)
Status:
US Previously Marketed
Source:
HALFAN by GLAXOSMITHKLINE
(1992)
Source URL:
First approved in 1992
Source:
HALFAN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Halofantrine is a blood schizonticidal antimalarial agent with no apparent action on the sporozoite, gametocyte or hepatic stages of the infection. It is used only to treat but not to prevent malaria. Has been marketed by GlaxoSmithKline as HALFAN (halofantrine hydrochloride) in 250 mg tablets indicated for the treatment of adults who can tolerate oral medication and who have mild to moderate malaria (equal to or less than 100,000 parasites/mm3) caused by Plasmodium falciparum or Plasmodium vivax. Among side effects is cardiac arrhythmia. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It was reported that halofantrine binds to hematin in vitro (crystal structure of the complex) and to to plasmpesin, a haemoglobin degrading enzyme unique to the malarial parasites.
Status:
US Previously Marketed
Source:
HALFAN by GLAXOSMITHKLINE
(1992)
Source URL:
First approved in 1992
Source:
HALFAN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Halofantrine is a blood schizonticidal antimalarial agent with no apparent action on the sporozoite, gametocyte or hepatic stages of the infection. It is used only to treat but not to prevent malaria. Has been marketed by GlaxoSmithKline as HALFAN (halofantrine hydrochloride) in 250 mg tablets indicated for the treatment of adults who can tolerate oral medication and who have mild to moderate malaria (equal to or less than 100,000 parasites/mm3) caused by Plasmodium falciparum or Plasmodium vivax. Among side effects is cardiac arrhythmia. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It was reported that halofantrine binds to hematin in vitro (crystal structure of the complex) and to to plasmpesin, a haemoglobin degrading enzyme unique to the malarial parasites.
Status:
US Previously Marketed
Source:
LORABID by KING PHARMS
(1991)
Source URL:
First approved in 1991
Source:
LORABID by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Loracarbef (KT3777) is carbacephem antibiotic structurally identical to cefaclor, except that the sulfur atom of position 1 of the cephem nucleus has been replaced by carbon. It showed good affinity for penicillin-binding proteins. At low concentrations (< 2 mg/L) in vitro, it inhibits Streptococcus pneumoniae, S. pyogenes, beta-haemolytic streptococci groups B, C and G. Proteus mirabilis and Moraxella catarrhalis, including beta-lactamase-producing strains. At therapeutic plasma concentrations it is also active in vitro against most strains of Staphylococcus aureus, S. saprophyticus, Escherichia coli and beta-lactamase-positive and -negative strains of Haemophilus influenzae. Loracarbef has been indicated in the treatment of patients with mild to moderate infections caused by susceptible strains of the designated microorganisms.
Status:
US Previously Marketed
Source:
ARDUAN by ORGANON USA INC
(1990)
Source URL:
First approved in 1990
Source:
ARDUAN by ORGANON USA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pipecuronium is a piperazinyl androstane derivative, which is a non-depolarizing neuromuscular blocking agent, which was approved under brand name arduan for injection. It is a long-acting neuromuscular blocking agent, indicated as an adjunct to general anesthesia, to provide skeletal muscle relaxation during surgery. Arduan can also be used to provide skeletal muscle relaxation for endotracheal intubation. Pipecuronium undergoes very little metabolism and is excreted by the kidney and the liver. Owing to its relatively long duration of action and to the residual postoperative neuromuscular block (RPONB), the use of pipecuronium was discontinued in the United States and in several European countries. Because of its excellent safety profile, the use of pipecuronium has been maintained in several countries including China, Russia, Brazil, and Hungary, among others. Its safe use, however, is dependent on the availability of a reliable reversal drug. Although widely used, there are concerns with the use of neostigmine for reversal. Arduan is a powerful competitive antagonist of acetylcholine, since it can bind pre- and postsynaptic (N1) receptors of the transmitters.
Status:
US Previously Marketed
Source:
ARDUAN by ORGANON USA INC
(1990)
Source URL:
First approved in 1990
Source:
ARDUAN by ORGANON USA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pipecuronium is a piperazinyl androstane derivative, which is a non-depolarizing neuromuscular blocking agent, which was approved under brand name arduan for injection. It is a long-acting neuromuscular blocking agent, indicated as an adjunct to general anesthesia, to provide skeletal muscle relaxation during surgery. Arduan can also be used to provide skeletal muscle relaxation for endotracheal intubation. Pipecuronium undergoes very little metabolism and is excreted by the kidney and the liver. Owing to its relatively long duration of action and to the residual postoperative neuromuscular block (RPONB), the use of pipecuronium was discontinued in the United States and in several European countries. Because of its excellent safety profile, the use of pipecuronium has been maintained in several countries including China, Russia, Brazil, and Hungary, among others. Its safe use, however, is dependent on the availability of a reliable reversal drug. Although widely used, there are concerns with the use of neostigmine for reversal. Arduan is a powerful competitive antagonist of acetylcholine, since it can bind pre- and postsynaptic (N1) receptors of the transmitters.
Status:
US Previously Marketed
Source:
CEFPIRAMIDE SODIUM by WYETH AYERST
(1989)
Source URL:
First approved in 1989
Source:
CEFPIRAMIDE SODIUM by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefpiramide or SM-1652 (sodium 7-[D(-)-alpha-(4-hydroxy-6-methylpyridine-3-carboxamido)-alpha-(4-hydroxyphenyl)acetamido]-3-[(1-methyl-1H-tetrazol-5-yl) thiomethyl]-3-cephem-4-carboxylate) is a semisynthetic cephalosporin derivative with a broad spectrum of antibacterial activity. This antibiotic has been reported to have potent in vitro and in vivo antibacterial activities against gram-positive and -negative bacteria.
Status:
US Previously Marketed
Source:
CEFMAX by TAP PHARM
(1987)
Source URL:
First approved in 1987
Source:
CEFMAX by TAP PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefmenoxime is a semisynthetic beta-lactam cephalosporin antibiotic with activity similar to that of cefotaxime. Like other 'third-generation' cephalosporins it is active in vitro against most common Gram-positive and Gram-negative pathogens, is a potent inhibitor of Enterobacteriaceae (including beta-lactamase-producing strains), and is resistant to hydrolysis by beta-lactamases. Cefmenoxime has a high rate of clinical efficacy in many types of infection and is at least equal in clinical and bacteriological efficacy to several other cephalosporins in urinary tract infections, respiratory tract infections, postoperative infections and gonorrhoea. The bactericidal activity of cefmenoxime results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cefmenoxime is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. Cefmenoxime is marketed in Japan under the brand name Bestron, indicated for the treatment of otitis externa, otitis media, and sinusitis. Cefmenoxime hydrochloride was approved by the U.S. Food and Drug Administration (FDA) on Dec 30, 1987. It was developed and marketed as Cefmax®, but it has being discontinued.
Status:
US Previously Marketed
Source:
SPECTAMINE by IMP
(1987)
Source URL:
First approved in 1987
Source:
SPECTAMINE by IMP
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Iofetamine hydrochloride I-123 is a radiopharmaceutical for cerebral perfusion imaging. lofetamine is the N-isopropyl derivative of amphetamine with iodine 123(1123) at the para position to serve
as the tracer. This configuration was systematically
derived by Winchell et al. to provide sufficient brain
uptake and retention for brain imaging, which typically
requires an acquisition time of 25-40 minutes. After
experimental intraarterial injection the drug has a high
extraction ratio (> 90 percent) in the brain. Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, with negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. Iofetamine hydrochloride I-123 under the brand name Spectamine was approved for use in the United States as a diagnostic aid in determining the localization of and in the evaluation of non-lacunar stroke and complex partial seizures, as well as in the early diagnosis of Alzheimer's disease in 1987. However it was discontinued in USA.
Status:
US Previously Marketed
Source:
MAXAIR by BAUSCH
(1986)
Source URL:
First approved in 1986
Source:
MAXAIR by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.
Status:
US Previously Marketed
Source:
MAXAIR by BAUSCH
(1986)
Source URL:
First approved in 1986
Source:
MAXAIR by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Pirbuterol (trade name Maxair) is a short-acting β2 adrenoreceptor agonist with bronchodilating action used in the treatment of asthma. The pharmacologic effects of beta-adrenergic agonist drugs, including pirbuterol, are at least in proof attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Pirbuterol is used in asthma for reversal of acute bronchospasm, and also as a maintenance medication to prevent future attacks. It should be used in patients 12 years of age and older with or without concurrent theophylline and/or inhaled corticosteroid. After inhalation of doses up to 800 μg (twice the maximum recommended dose) systemic blood levels of pirbuterol are below the limit of assay sensitivity (2–5 ng/ml). A mean of 51% of the dose is recovered in urine as pirbuterol plus its sulfate conjugate following administration by aerosol. Pirbuterol is not metabolized by catechol-O-methyltransferase.