{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for alpha root_names_stdName in Standardized Name (approximate match)
Status:
US Approved Rx
(1998)
Source:
NDA050731
(1998)
Source URL:
First approved in 1979
Source:
CERUBIDINE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Status:
US Approved Rx
(2023)
Source:
ANDA216897
(2023)
Source URL:
First approved in 1979
Source:
NDA017989
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Carboprost is an analogue of naturally occurring prostaglandin F2alpha. Administered intramuscularly carboprost stimulates in the gravid uterus myometrial contractions similar to labor contractions at the end of a full term pregnancy. It is indicated for aborting pregnancy between the 13th and 20th weeks of gestation as calculated from the first day of the last normal menstrual period and for the treatment of postpartum hemorrhage due to uterine atony, which has not responded to conventional methods of management. The most frequent adverse reactions observed are related to its contractile effect on smooth muscle: vomiting, diarrhea, nausea, fever and flushing. Carboprost may augment the activity of other oxytocic agents. Concomitant use with other oxytocic agents is not recommended.
Status:
US Approved Rx
(2020)
Source:
ANDA213734
(2020)
Source URL:
First approved in 1979
Source:
NDA017871
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Metirosine is an antihypertensive drug. Metyrosine inhibits tyrosine hydroxylase, which catalyzes the first transformation in catecholamine biosynthesis, i.e., the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Because the first step is also the rate-limiting step, blockade of tyrosine hydroxylase activity results in decreased endogenous levels of catecholamines and their synthesis. This consequently, depletes the levels of the catecholamines dopamine, adrenaline and noradrenaline in the body,usually measured as decreased urinary excretion of catecholamines and their metabolites. One main end result of the catecholamine depletion is a decrease in blood presure. Metirosine is used for the treatment of patients with pheochromocytoma, for preoperative preparation of patients for surgery, management of patients when surgery is contraindicated, and chronic treatment of patients with malignant pheochromocytoma.
Status:
US Approved Rx
(2005)
Source:
ANDA077226
(2005)
Source URL:
First approved in 1978
Source:
NDA017962
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Bromocriptine is an ergot derivative with potent dopamine receptor agonist activity, which activates post-synaptic dopamine receptors. Bromocriptine is indicated for the treatment of dysfunctions associated with hyperprolactinemia. Bromocriptine therapy is indicated in the treatment of acromegaly and in the treatment of the signs and symptoms of idiopathic or postencephalitic Parkinson’s disease. It is approved as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Some commonly reported adverse reactions include nausea, fatigue, dizziness, vomiting and headache. Bromocriptine may interact with dopamine antagonists, butyrophenones and certain other agents.
Status:
US Approved Rx
(1998)
Source:
NDA021068
(1998)
Source URL:
First approved in 1978
Source:
NDA018044
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Calcitriol is vitamin D3. Vitamin D is important for the absorption of calcium from the stomach and for the functioning of calcium in the body. Calcitriol is used to treat hyperparathyroidism (overactive parathyroid glands) and metabolic bone disease in people who have chronic kidney failure and are not receiving dialysis. Calcitriol is also used to treat calcium deficiency (hypocalcemia). The early signs and symptoms of vitamin D intoxication associated with hypercalcemia include: weakness, headache, somnolence, nausea, vomiting, dry mouth, constipation, muscle pain, bone pain and metallic taste. Cholestyramine has been reported to reduce intestinal absorption of fatsoluble vitamins; as such it may impair intestinal absorption of Calcitriol. Ketoconazole may inhibit both synthetic and catabolic enzymes of calcitriol.
Status:
US Approved Rx
(1985)
Source:
ANDA070101
(1985)
Source URL:
First approved in 1977
Source:
NDA017447
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Disopyramide is an antiarrhythmic drug indicated for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia that are life-threatening. In man, Disopyramide at therapeutic plasma levels shortens the sinus node recovery time, lengthens the effective refractory period of the atrium, and has a minimal effect on the effective refractory period of the AV node. Little effect has been shown on AV-nodal and His-Purkinje conduction times or QRS duration. However, prolongation of conduction in accessory pathways occurs. Disopyramide is a Type 1A antiarrhythmic drug (ie, similar to procainamide and quinidine). It inhibits the fast sodium channels. In animal studies Disopyramide decreases the rate of diastolic depolarization (phase 4) in cells with augmented automaticity, decreases the upstroke velocity (phase 0) and increases the action potential duration of normal cardiac cells, decreases the disparity in refractoriness between infarcted and adjacent normally perfused myocardium, and has no effect on alpha- or beta-adrenergic receptors. It is used for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia, ventricular pre-excitation and cardiac dysrhythmias. It is a Class Ia antiarrhythmic drug.
Status:
US Approved Rx
(2017)
Source:
ANDA207440
(2017)
Source URL:
First approved in 1977
Source:
FLORONE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Diflorasone is a topical corticosteroid used to treat itching and inflammation of the skin. Topical corticosteroids share anti-inflammatory, antipruritic and vasoconstrictive actions. The mechanism of anti-inflammatory activity of the topical corticosteroids is unclear. Various laboratory methods, including vasoconstrictor assays, are used to compare and predict potencies and/or clinical efficacies of the topical corticosteroids. There is some evidence to suggest that a recognizable correlation exists between vasoconstrictor potency and therapeutic efficacy in man. The extent of percutaneous absorption of topical corticosteroids is determined by many factors including the vehicle, the integrity of the epidermal barrier, and the use of occlusive dressings. Topical corticosteroids can be absorbed from normal intact skin. Inflammation and/or other disease processes in the skin increase percutaneous absorption. Occlusive dressings substantially increase the percutaneous absorption of topical corticosteroids. Thus, occlusive dressings may be a valuable therapeutic adjunct for treatment of resistant dermatoses. Once absorbed through the skin, topical corticosteroids are handled through pharmacokinetic pathways similar to systemically administered corticosteroids. Corticosteroids are bound to plasma proteins in varying degrees. They are metabolized primarily in the liver and are then excreted by the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile.
Status:
US Approved Rx
(1997)
Source:
ANDA074884
(1997)
Source URL:
First approved in 1977
Source:
TAVIST by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clemastine is an antihistamine with anticholinergic (drying) and sedative side effects. Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. It is used for the relief of symptoms associated with allergic rhinitis such as sneezing, rhinorrhea, pruritus and acrimation. Also for the management of mild, uncomplicated allergic skin manifestations of urticaria and angioedema. Used as self-medication for temporary relief of symptoms associated with the common cold.
Status:
US Approved Rx
(1992)
Source:
NDA019617
(1992)
Source URL:
First approved in 1977
Source:
PROSTIN E2 by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dinoprostone is a naturally occurring prostaglandin E2 (PGE2). Dinoprostone is equivalent to prostaglandin E2 (PGE2). It stimulates labor and delivery by stimulating the uterine, and thus terminates pregnancy. Dinoprostone is also capable of stimulating the smooth muscle of the gastrointestinal tract of man. This activity may be responsible for the vomiting and/or diarrhea that is not uncommon when dinoprostone is used to terminate pregnancy. Dinoprostone administered intravaginally stimulates the myometrium of the gravid uterus to contract in a manner that is similar to the contractions seen in the term uterus during labor, resulting in the evacuation of the products of conception from the uterus. It is believed that dinoprostone exerts its uterine effects via direct myometrial stimulation. It is used for the termination of pregnancy during the second trimester (from the 12th through the 20th gestational week as calculated from the first day of the last normal menstrual period), as well as for evacuation of the uterine contents in the management of missed abortion or intrauterine fetal death up to 28 weeks of gestational age as calculated from the first day of the last normal menstrual period. Also used in the management of nonmetastatic gestational trophoblastic disease (benign hydatidiform mole). Other indications include improving the cervical inducibility (cervical "ripening") in pregnant women at or near term with a medical or obstetrical need for labor induction, and the management of postpartum hemorrhage.
Status:
US Approved Rx
(2006)
Source:
ANDA077552
(2006)
Source URL:
First approved in 1977
Source:
TOPICORT by TARO
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Desoximetasone (Topicort®) is a topical anti-inflammatory glucocorticoid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses and for the treatment of plaque psoriasis in patients 18 years of age or older. The topical corticosteroids constitute a class of primarily synthetic steroids used as anti-inflammatory and antipruritic agents. They play a role in cellular signaling, immune function, inflammation and protein regulation; however, the precise mechanism of action in psoriasis is unknown. The mechanism of anti-inflammatory activity of the topical corticosteroids is also unclear. Various laboratory methods, including vasoconstrictor assays, are used to compare and predict potencies and/or clinical efficacies of the topical corticosteroids. There is some evidence to suggest that a recognizable correlation exists between vasoconstrictor potency and therapeutic efficacy in man.