U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 141 - 150 of 2447 results

Bremelanotide (formerly PT-141) was developed for the treatment of female sexual dysfunction, hemorrhagic shock, and reperfusion injury. Bremelanotide, a synthetic peptide analog of α-melanocyte-stimulating hormone (α-MSH) is an agonist at melanocortin receptors including the MC3R and MC4R, which are expressed primarily in the central nervous system. Bremelanotide originally was tested for intranasal administration in treating female sexual dysfunction but this application was temporarily discontinued in 2008 after concerns were raised over adverse side effects of increased blood pressure. It appears that development for hemorrhagic shock and reperfusion injury has been discontinued. Palatin Technologies licensed North American development and commercialization rights of bremelanotide to Amag in January 2017. In June 2018, the US Food and Drug Administration (FDA) accepted AMAG Pharmaceuticals’ new drug application for bremelanotide for treatment of hypoactive sexual desire disorder in premenopausal women. If approved, bremelanotide will be available as a self-administered, disposable subcutaneous auto-injector used in anticipation of a sexual encounter.
Triclabendazole, (brand name Avomec, Egaten, etc) is a member of the benzimidazole family of anthelmintics used to treat liver flukes, specifically fascioliasis and paragonimiasis. Triclabendazole used routinely since 1983 in veterinary practice for the treatment of fascioliasis. It was not used in humans until the 1989 epidemic of fascioliasis near the Caspian Sea when Iranian authorities approved the use of the veterinary formulation to treat the infection. Fasciolicidal not only against the adult worms present in the biliary ducts, but also against the immature larval stages of Fasciola migrating through the hepatic parenchyma. Triclabendazole is shown to penetrate into liver flukes by transtegumentary absorption followed by inhibition of the parasite's motility, probably related to the destruction of the microtubular structure, resulting in the death of the parasite; the immobilizing effect is paralleled by changes in the parasite's resting tegumental membrane potential, strongly inhibiting the release of proteolytic enzymes, a process that appears critical to the survival of the parasite. Side effects are generally few, but can include abdominal pain and headaches. Biliary colic may occur due to dying worms. While no harms have been found with use during pregnancy, triclabendazole has not been well studied in this population. Triclabendazole is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. It is not commercially available in the United States.
Pexidartinib (PLX3397) is a small-molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Pexidartinib binds to and inhibits phosphorylation of stem cell factor receptor (KIT), colony-stimulating factor-1 receptor (CSF1R) and FMS-like tyrosine kinase 3 (FLT3), which may result in the inhibition of tumor cell proliferation and down-modulation of macrophages, osteoclasts and mast cells involved in the osteolytic metastatic disease. FDA has granted Breakthrough Therapy Designation to pexidartinib (PLX3397) for the treatment of tenosynovial giant cell tumor (TGCT) where surgical removal of the tumor would be associated with potentially worsening functional limitation or severe morbidity. In addition to Breakthrough Therapy Designation, pexidartinib (PLX3397) has been granted Orphan Drug Designation by FDA for the treatment of pigmented villonodular synovitis (PVNS) and giant cell tumor of the tendon sheath (GCT-TS). It also has received Orphan Designation from the European Commission for the treatment of TGCT.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Afamelanotide (SCENESSE) is a synthetic α-melanocyte stimulating hormone analog and first-in-class melanocortin-1 receptor agonist that is approved in the EU for the prevention of phototoxicity in adults with erythropoietic protoporphyria. Afamelanotide differs from endogenous α-melanocyte stimulating hormone at the fourth and seventh amino acid residues, increasing its resistance to immediate degradation and increasing its binding time to melanocortin-1 receptor. Afamelanotide is mimic the pharmacological activity of α-melanocyte stimulating hormone by binding to the melanocortin-1 receptor on melanocytes and activating the synthesis of eumelanin. Eumelanin provides photoprotection through mechanisms including, but not limited to, the absorption and scattering of visible and UV light and antioxidant activity. Afamelanotide increases eumelanin density in healthy volunteers and patients with erythropoietic protoporphyria. In healthy, fair-skinned volunteers, a significant increase in melanin density and skin darkening in both sun-exposed and non-sun-exposed sites was seen with subcutaneous injections of afamelanotide. The most common afamelanotide adverse events included headache and nausea. Common adverse effects include back pain, upper respiratory tract infections, decreased appetite, migraine, and dizziness.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Fluorodopa F-18 is the amino acid analog fluorodopa (FDOPA) labeled with fluorine F 18, a positron-emitting isotope. It is diagnostic PET agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumours and to search for recurrence of viable glioma tissue. Fluorodopa F-18 is able to cross the blood-brain barrier and is taken up by brain tumor cells. As uptake is higher in tumor cells, tumors may then be imaged using positron emission tomography (PET). Assessing tumor uptake of FDOPA may be beneficial for diagnosis, localization and in determining further treatment. The clinical usefulness of Fluorodopa F-18 has been evaluated and recognised in France and subsequently in several EU countries. Fluorodopa F-18 was registered in France in 2006. 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (FDOPA) is a large, neutral amino acid that is transported into presynaptic neurons, where it is converted by the enzyme aromatic aminoacid decarboxylase [AAAD]) into fluorodopamine-(18F), which subsequently enters cathecholamine-storage vesicles. 6-fluoro(18F)-L-dopa crosses the blood-brain barrier; therefore, when injected into the blood stream, it reaches the dopaminergic cells in the brain and is used by the brain as a precursor for dopamine. This makes it possible to monitor intracerebral synthesis and uptake of dopamine by means of the positron-emitting 6-fluoro(18F)-L-3,4-dihydroxyphenylalanine (FDOPA), in conjunction with externally-placed devices suited for detection of annihilation photons, which progressively led to the most recent positron emission tomography (PET) units. Iasodopa, the commercial preparation of FDOPA that obtained a marketing authorisation in France in November 2006 (which is currently recognised by several other EU countries), is a solution for injection. The activity available at time of administration ranges from 0.1 GBq to 0.8 GBq per vial. The half-life of the radionuclide is 109.8 min with emission of positron radiation (Emax: 0.633 MeV) followed by photon annihilation radiations of 0.511 MeV.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Lusutrombopag (trade name Mulpleta) is an orally bioavailable, small molecule thrombopoietin (TPO) receptor agonist being developed by Shionogi for chronic liver disease (CLD) patients with thrombocytopenia prior to elective invasive surgery. Lusutrombopag acts selectively on the human TPO receptor and activates signal transduction pathways that promote the proliferation and differentiation of bone marrow cells into megakaryocytes, thereby increasing platelet levels. In September 2015, Lusutrombopag received its first global approval in Japan for the improvement of CLD-associated thrombocytopenia in patients scheduled to undergo elective invasive procedures. Oral Lusutrombopag is rapidly absorbed, with a median time to maximum serum concentration (Tmax) of 3.8–4.0 h in healthy subjects administered single doses of oral Lusutrombopag 1, 2 or 4 mg, and 6 h in CLD patients with thrombocytopenia administered oral Lusutrombopag 3 mg once daily for 7 days. The major metabolic pathway for Lusutrombopag appears to be omega- and beta-oxidation. Lusutrombopag is a substrate of breast cancer resistance protein and P-glycoprotein, according to in vitro data.
Doravirine (MK-1439) is a nonnucleoside inhibitor of HIV reverse transcriptase (NNRTI). It displays excellent activities against not only WT viruses but also a broader panel of NNRTI-resistant viruses. Doravirine is a prescription medicine approved by the U.S. Food and Drug Administration (FDA) for the treatment of HIV infection in adults who have never taken HIV medicines before. Doravirine is always used in combination with other HIV medicines.

Class (Stereo):
CHEMICAL (RACEMIC)



Lofexidine is newly FDA approved in the United States under the brand name LUCEMYRA for the treatment of opioid withdrawal symptoms in adults. Lofexidine acts as an agonist to α2 adrenergic receptors. These receptors inhibit adenylyl cyclase activity, leading to the inhibition of the second messenger, cyclic adenosine monophosphate (cAMP). The inhibition of cAMP leads to potassium efflux through calcium-activated channels, blocking calcium ions from entering the nerve terminal, resulting in suppression of neural firing, inhibition of norepinephrine release. Lofexidine replaces the opioid-driven inhibition of cAMP production and moderating the symptoms of opioid withdrawal.
Tafenoquine is anti-malaria drug originated in Walter reed army institute of research and developed by GSK and 60 Degrees Pharmaceuticals. In 2018 United States Food and Drug Administration (FDA) approved single dose tafenoquine for the radical cure (prevention of relapse) of Plasmodium vivax malaria. Tafenoquine, an 8-aminoquinoline antimalarial, is active against all the stages of Plasmodium species that include the hypnozoite (dormant stage) in the liver. Studies in vitro with the erythrocytic forms of Plasmodium falciparum suggest that tafenoquine may exert its effect by inhibiting hematin polymerization and inducing apoptotic like death of the parasite. In addition to its effect on the parasite, tafenoquine causes red blood cell shrinkage in vitro. Tafenoquine is active against pre-erythrocytic (liver) and erythrocytic (asexual) forms as well as gametocytes of Plasmodium species that include P. falciparum and P. vivax. The activity of tafenoquine against the pre-erythrocytic liver stages of the parasite, prevents the development of the erythrocytic forms of the parasite.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Lotilaner is a member of the isoxazoline family, a novel class of parasiticides that targets the nerve receptors of ticks and fleas. This veterinary medicinal product provides immediate and persistent killing activity for 1 month for fleas (Ctenocephalides felis and C. canis) and ticks (Rhipicephalus sanguineus, Ixodes ricinus, I. hexagonus and Dermacentor reticulatus). The veterinary medicinal product can be used as part of a treatment strategy for the control of flea allergy dermatitis. During clinical testing, no interactions between Lotilaner chewable tablets and routinely used veterinary medicinal products were observed.