U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 131 - 140 of 198 results

Protein
Status:
Possibly Marketed Outside US

Class:
PROTEIN


Class:
POLYMER


Benzylpenicilloyl Polylysine is a skin-testing reagent which used to detect immunoglobulin E antibodies in people with a history of penicillin allergy. The quantitation of in vitro IgE antibodies to the benzylpenicilloyl determinant is a useful tool for evaluating allergic subjects. A penicillin skin test predicts only the presence of IgE antibodies for the major or minor penicillin determinants at the time of application and does not predict the future development of IgE-mediated reactions during subsequent courses of penicillin. Benzylpenicilloyl polylysine reacts specifically with penicilloyl skin sensitizing antibodies (reagins) to produce immediate wheal and flare reactions which may reflect increased risk of allergic reactions to subsequent penicillin therapy. The use of benzylpenicilloyl polylysine can detect between 75-90% of all positive reactions to penicillin. Benzylpenicilloyl polylysine was FDA approved in 2009 for the assessment of sensitization to penicillin (benzylpenicillin or penicillin G) in those patients suspected of having a clinical hypersensitivity to penicillin.
Status:
Possibly Marketed Outside US

Class:
POLYMER

Gleptoferron is a macromolecular complex of beta-ferric oxyhydroxide and dextran glucoheptonic acid that has been used for iron-deficiency anemia in veterinary medicine.

Class (Stereo):
CHEMICAL (ACHIRAL)


Hexaminolevulinate is an optical imaging drug. In solution form, it is instilled intravesically for use with photodynamic blue light cystoscopy as an adjunct to white light cystoscopy. After bladder instillation, hexaminolevulinate enters the bladder mucosa and is proposed to enter the intracellular space of mucosal cells where it is used as a precursor in the formation of the photoactive intermediate protoporphyrin IX (PpIX) and other photoactive porphyrins (PAPs). PpIX and PAPs are reported to accumulate preferentially in neoplastic cells as compared to normal urothelium, partly due to altered enzymatic activity in the neoplastic cells. In 2010, FDA granted approval for hexaminolevulinate hydrochloride as an optical imaging agent for cystoscopic detection of non-muscle invasive papillary cancer of the bladder for patients suspected or known to have lesion(s) on the basis of a prior cystoscopy.
Status:
First approved in 1996

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

FERROSOFERRIC OXIDE is a black ore of iron. It is a coloring matter used in the pharmaceutical industry as a coating pigment.
Status:
First approved in 1996

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

FERROSOFERRIC OXIDE is a black ore of iron. It is a coloring matter used in the pharmaceutical industry as a coating pigment.
DOTAREM (Gadoterate Meglumine ) is a gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associatedtissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity. Gadoterate Meglumine is a gadolinium chelate paramagnetic contrast agent. When placed in a magnetic field, gadoterate meglumine produces a large magnetic moment and so a large local magnetic field, which can enhance the relaxation rate of nearby protons; as a result, the signal intensity of tissue images observed with magnetic resonance imaging (MRI) may be enhanced. Because this agent is preferentially taken up by normal functioning hepatocytes, normal hepatic tissue is enhanced with MRI while tumor tissue is unenhanced. In addition, because gadobenate dimeglumine is excreted in the bile, it may be used to visualize the biliary system using MRI.
DOTAREM (Gadoterate Meglumine ) is a gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associatedtissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity. Gadoterate Meglumine is a gadolinium chelate paramagnetic contrast agent. When placed in a magnetic field, gadoterate meglumine produces a large magnetic moment and so a large local magnetic field, which can enhance the relaxation rate of nearby protons; as a result, the signal intensity of tissue images observed with magnetic resonance imaging (MRI) may be enhanced. Because this agent is preferentially taken up by normal functioning hepatocytes, normal hepatic tissue is enhanced with MRI while tumor tissue is unenhanced. In addition, because gadobenate dimeglumine is excreted in the bile, it may be used to visualize the biliary system using MRI.
DOTAREM (Gadoterate Meglumine ) is a gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associatedtissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity. Gadoterate Meglumine is a gadolinium chelate paramagnetic contrast agent. When placed in a magnetic field, gadoterate meglumine produces a large magnetic moment and so a large local magnetic field, which can enhance the relaxation rate of nearby protons; as a result, the signal intensity of tissue images observed with magnetic resonance imaging (MRI) may be enhanced. Because this agent is preferentially taken up by normal functioning hepatocytes, normal hepatic tissue is enhanced with MRI while tumor tissue is unenhanced. In addition, because gadobenate dimeglumine is excreted in the bile, it may be used to visualize the biliary system using MRI.

Showing 131 - 140 of 198 results