U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1041 - 1050 of 2340 results

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
Other

Class (Stereo):
CHEMICAL (MIXED)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)



A-412,997 or A-412997 is a highly selective agonist for the dopamine D4 receptor. In animal tests, it improved cognitive performance to a similar extent as methylphenidate, but without producing place preference or other signs of abuse liability. When dosed systemically, A-412997 crossed the blood brain barrier rapidly. It was suggested, that selective activation of the D4 receptor, A-412997, might represent a target for the treatment of attention deficit hyperactivity disorder without the potential drug abuse liability associated with current psychostimulant therapies.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea (A-425619), a novel, potent, and selective transient receptor potential type V1 (TRPV1) antagonist, attenuates pain associated with inflammation and tissue injury in rats. A-425619 was found to potently block capsaicin-evoked increases in intracellular calcium concentrations in HEK293 cells expressing recombinant human TRPV1 receptors (IC50 = 5 nM). A-425619 showed similar potency (IC50 = 3-4 nM) to block TRPV1 receptor activation by anandamide and N-arachidonoyl-dopamine. Electrophysiological experiments showed that A-425619 also potently blocked the activation of native TRPV1 channels in rat dorsal root ganglion neurons (IC50 = 9 nM). In vivo, A-425619 dose dependently reduced capsaicin-induced mechanical hyperalgesia (ED50 = 45 umol/kg p.o.). A-425619 was also effective in models of inflammatory pain and postoperative pain. A-425619 potently reduced complete Freund's adjuvant-induced chronic inflammatory pain after oral administration (ED50 = 40 umol/kg p.o.) and was also effective after either i.t. administration or local injection into the inflamed paw. Furthermore, A-425619 maintained efficacy in the postoperative pain model after twice daily dosing p.o. for 5 days. A-425619 also showed partial efficacy in models of neuropathic pain. A-425619 did not alter motor performance at the highest dose tested (300 micromol/kg p.o.). A-425619, a potent and selective antagonist of TRPV1 receptors, effectively relieves acute and chronic inflammatory pain and postoperative pain.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Showing 1041 - 1050 of 2340 results