U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1021 - 1030 of 1075 results

Status:
US Previously Marketed
Source:
Thioguanine by Burroughs Wellcome
(1966)
Source URL:
First approved in 1966
Source:
Thioguanine by Burroughs Wellcome
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Thioguanine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute nonlymphocytic leukemia. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. Thioguanine was first synthesized and entered into clinical trial more than 30 years ago. It is a 6-thiopurine analogue of the naturally occurring purine bases hypoxanthine and guanine. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Thioguanine is cross-resistant with mercaptopurine. Cytotoxicity is cell cycle phase-specific (S-phase). Thioguanine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to 6-thioguanilyic acid (TGMP), which reaches high intracellular concentrations at therapeutic doses. TGMP interferes with the synthesis of guanine nucleotides by its inhibition of purine biosynthesis by pseudofeedback inhibition of glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway of purine ribonucleotide synthesis. TGMP also inhibits the conversion of inosinic acid (IMP) to xanthylic acid (XMP) by competition for the enzyme IMP dehydrogenase. Thioguanine nucleotides are incorporated into both the DNA and the RNA by phosphodiester linkages, and some studies have shown that incorporation of such false bases contributes to the cytotoxicity of thioguanine. Its tumor inhibitory properties may be due to one or more of its effects on feedback inhibition of de novo purine synthesis; inhibition of purine nucleotide interconversions; or incorporation into the DNA and RNA. The overall result of its action is a sequential blockade of the utilization and synthesis of the purine nucleotides. Thioguanine is used for remission induction and remission consolidation treatment of acute nonlymphocytic leukemias. It is marketed under the trade name Lanvis and Tabloid among others.
Status:
US Previously Marketed
First approved in 1963

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Pargyline is an irreversible selective monoamine oxidase (MAO)-B inhibitor, which possesses higher selectivity to this isoform in comparison with MAO-A. It was approved under brand name eutonyl for the treatment hypertension, but then this drug was discontinued.
Status:
US Previously Marketed
Source:
Monase by Upjohn
(1961)
Source URL:
First approved in 1961
Source:
Monase by Upjohn
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

ETRYPTAMINE (MONASE®), similar to the hallucinogenic tryptamines, is an inhibitor of monoamine oxidase, introduced for use as an antidepressant. It was withdrawn from the market due to problems with agranulocytosis and other side effects. However, it's activity is still under scientific investigation.
Status:
US Previously Marketed
Source:
Lucantbone HCl by Burroughs Wellcome
(1960)
Source URL:
First approved in 1960
Source:
Lucantbone HCl by Burroughs Wellcome
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Lucanthone is a thioxanthenone DNA intercalator. It inhibits topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1. Lucanthone has been devised for the treatment of schistosomiasis. It is also an antitumor agent. Lucanthone was being developed by Spectrum Pharmaceuticals for the treatment of malignant brain tumours.
Status:
US Previously Marketed
Source:
Catron by Lakeside (MerrellNational)
(1959)
Source URL:
First approved in 1959
Source:
Catron by Lakeside (MerrellNational)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



PHENIPRAZINE is a monoamine oxidase inhibitor of the hydrazine chemical class that was used for the treatment of depression, schizophrenia, and also as a long-acting coronary vasodilator in patients suffering from angina pectoris. PHENIPRAZINE was discontinued due to toxicity concerns such as jaundice, amblyopia, and optic neuritis.
Status:
US Previously Marketed
First approved in 1959

Class (Stereo):
CHEMICAL (ACHIRAL)



Demecarium (HUMORSOL®) is an indirect-acting parasympathomimetic agent, also known as a cholinesterase inhibitor and anticholinesterase. Cholinesterase inhibitors prolong the effect of acetylcholine, which is released at the neuroeffector junction of parasympathetic postganglion nerves, by inactivating the cholinesterases that break it down. Application of demecarium (HUMORSOL®) to the eye produces intense miosis and ciliary muscle contraction due to inhibition of cholinesterase, allowing acetylcholine to accumulate at sites of cholinergic transmission. These effects are accompanied by increased capillary permeability of the ciliary body and iris, increased permeability of the blood-aqueous barrier, and vasodilation. Myopia may be induced or, if present, may be augmented by the increased refractive power of the lens that results from the accommodative effect of the drug. Demecarium (HUMORSOL®) indirectly produces some of the muscarinic and nicotinic effects of acetylcholine as quantities of the latter accumulate.
Status:
US Previously Marketed
First approved in 1956

Class (Stereo):
CHEMICAL (ACHIRAL)



Ambenonium is a cholinesterase inhibitor with all the pharmacologic actions of acetylcholine, both the muscarinic and nicotinic types. It was marketed under the brand name Mytelase, but was withdrawn from the market in the United States in 2010. Ambenonium, similar to pyridostigmine and neostigmine, is used for the treatment of muscle weakness and fatigue in people with myasthenia gravis.Ambenonium exerts its actions against myasthenia gravis by competitive, reversible inhibition of acetylcholinesterase. The disease myasthenia gravis occurs when the body inappropriately produces antibodies against acetylcholine receptors, and thus inhibits proper acetylcholine signal transmission (when acetylcholine binds to acetylcholine receptors of striated muscle fibers, it stimulates those fibers to contract). Ambenonium reversibly binds acetylcholinesterase at the anionic site, which results in the blockage of the site of acetycholine binding, thereby inhibiting acetylcholine hydrolysis and enhancing cholinergic function through the accumulation of acetycholine at cholinergic synpases. In turn this facilitates transmission of impulses across the myoneural junction and effectively treats the disease.
Status:
US Previously Marketed
First approved in 1956

Class (Stereo):
CHEMICAL (ACHIRAL)



Ambenonium is a cholinesterase inhibitor with all the pharmacologic actions of acetylcholine, both the muscarinic and nicotinic types. It was marketed under the brand name Mytelase, but was withdrawn from the market in the United States in 2010. Ambenonium, similar to pyridostigmine and neostigmine, is used for the treatment of muscle weakness and fatigue in people with myasthenia gravis.Ambenonium exerts its actions against myasthenia gravis by competitive, reversible inhibition of acetylcholinesterase. The disease myasthenia gravis occurs when the body inappropriately produces antibodies against acetylcholine receptors, and thus inhibits proper acetylcholine signal transmission (when acetylcholine binds to acetylcholine receptors of striated muscle fibers, it stimulates those fibers to contract). Ambenonium reversibly binds acetylcholinesterase at the anionic site, which results in the blockage of the site of acetycholine binding, thereby inhibiting acetylcholine hydrolysis and enhancing cholinergic function through the accumulation of acetycholine at cholinergic synpases. In turn this facilitates transmission of impulses across the myoneural junction and effectively treats the disease.
Status:
US Previously Marketed
Source:
Mylaxen by Irwin, Neisler (Mallinckrodt)
(1955)
Source URL:
First approved in 1955
Source:
Mylaxen by Irwin, Neisler (Mallinckrodt)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Hexafluorenium inhibits the enzyme cholinesterase in the plasms, but apparently not at the neuromuscular juntion. It also has some nondepolarizing activity (tubocurarine-like) at the postjunctional membrane. In man hexafluorenium potentiates the muscle relaxant effects of succinylcholine. As such, smaller doses of succinylcholine are required and fewer side effects like fasciculations, twitching and postoperative muscle pain are experienced.
Status:
US Previously Marketed
Source:
Aminopterin Sodium by Lederle
(1952)
Source URL:
First approved in 1952
Source:
Aminopterin Sodium by Lederle
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Aminopterin is a synthetic derivative of pterins with antineoplastic and immunosuppressive properties. As a folate analog, aminopterin competes for the folate binding site of the enzyme dihydrofolate reductase, thereby blocking tetrahydrofolate synthesis, and resulting in depletion of nucleotide precursors and inhibition of DNA, RNA and protein synthesis. Aminopterin was marketed by Lederle Laboratories (Pearl River, New York) in the United States from 1953 to 1964 for the indication of pediatric leukemia. The closely related antifolate methotrexate was simultaneously marketed by the company during the same period. Aminopterin was discontinued by Lederle Laboratories in favor of methotrexate due to manufacturing difficulties of the former. During the period Aminopterin was marketed, the agent was used off-label to safely treat over 4,000 patients with psoriasis in the United States, producing dramatic clearing of lesions. The use of aminopterin in cancer treatment was supplanted in the 1950s by methotrexate due to the latter's better therapeutic index in a rodent tumor model. Now in a more pure preparation and supported by laboratory evidence of superior tumor cell uptake in vitro, aminopterin is being investigated in clinical trials in leukemia as a potentially superior antifolate to methotrexate.

Showing 1021 - 1030 of 1075 results