{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for betamethasone root_references_citation in Reference Text / Citation (approximate match)
Status:
US Approved Rx
(2013)
Source:
NDA203414
(2013)
Source URL:
First approved in 2013
Source:
NDA203414
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Alogliptin (trade name Nesina in the US and Vipidia in Europe) is an orally administered anti-diabetic drug in the DPP-4 inhibitor class, discovered by Takeda Pharmaceutical Company's wholly owned subsidiary, Takeda San Diego, Inc. (former Syrrx) which was acquired by Takeda in 2005. Alogliptin does not decrease the risk of heart attack and stroke. Like other members of the gliptin class, it causes little or no weight gain, exhibits relatively little risk of causing hypoglycemia, and exhibits relatively modest glucose-lowering activity. Alogliptin and other gliptins are commonly used in combination with metformin in patients whose diabetes cannot adequately be controlled with metformin alone.
Status:
US Approved Rx
(2007)
Source:
NDA022068
(2007)
Source URL:
First approved in 2007
Source:
NDA022068
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Nilotinib (AMN107, trade name Tasigna) is a kinase inhibitor indicated for the treatment of chronic phase and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia (CML) in adult patients resistant to or intolerant to prior therapy that included imatinib. Nilotinib is an inhibitor of the Bcr-Abl kinase. Nilotinib binds to and stabilizes the inactive conformation of the kinase domain of Abl protein. In vitro, nilotinib inhibited Bcr-Abl mediated proliferation of murine leukemic cell lines and human cell lines derived from Ph+ CML patients. Under the conditions of the assays, nilotinib was able to overcome imatinib resistance resulting from Bcr-Abl kinase mutations, in 32 out of 33 mutations tested. In vivo, nilotinib reduced the tumor size in a murine Bcr-Abl xenograft model. Nilotinib inhibited the autophosphorylation of the following kinases at IC50 values as indicated: Bcr-Abl (20-60 nM), PDGFR (69 nM) and c-Kit (210 nM). Nilotinib is currently being trialed in people with Parkinson's disease, as it appears to be able to halt progression of the disease and even improve their symptoms. The drug also has a number of adverse effects typical of anti-cancer drugs: a headache, fatigue, gastrointestinal problems such as nausea, vomiting, diarrhea and constipation, muscle and joint pain, rash and other skin conditions, flu-like symptoms, and reduced blood cell count. Less typical side effects are those of the cardiovascular system, such as hypertension (high blood pressure), various types of arrhythmia, and prolonged QT interval. Interaction of nilotinib with OATP1B1 and OATP1B3 may alter its hepatic disposition and can lead to transporter mediated drug-drug interactions. Nilotinib is an inhibitor of OATP-1B1 transporter but not for OATP-1B3. Main metabolic pathways identified in healthy subjects are oxidation and hydroxylation. Nilotinib is the main circulating component in the serum. None of the metabolites contributes significantly to the pharmacological activity of nilotinib.
Status:
US Approved Rx
(2013)
Source:
ANDA201914
(2013)
Source URL:
First approved in 1998
Source:
NDA020864
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan acts as an agonist at serotonin 5-HT1B and 5-HT1D receptors. Rizatriptan binds with high affinity to human cloned 5-HT1B/1D receptors. Rizatriptan benzoate presumably exerts its therapeutic effects in the treatment of a migraine headache by binding to 5-HT1B/1D receptors located on intracranial blood vessels and sensory nerves of the trigeminal system. Rizatriptan is completely absorbed following oral administration. The mean oral absolute bioavailability of the rizatriptan benzoate tablet is about 45%, and mean peak plasma concentrations are reached in approximately 1-1.5 hours. The presence of a migraine headache did not appear to affect the absorption or pharmacokinetics of rizatriptan. Food has no significant effect on the bioavailability of rizatriptan but delays the time to reach peak concentration by an hour. The primary route of rizatriptan metabolism is via oxidative deamination by monoamine oxidase-A (MAO-A) to the indole acetic acid metabolite, which is not active at the 5-HT1B/1D receptor. N-mono-desmethyl-rizatriptan, a metabolite with activity similar to that of parent compound at the 5-HT1B/1D receptor, is formed to a minor degree. Plasma concentrations of N-mono-desmethyl-rizatriptan are approximately 14% of those of parent compound, and it is eliminated at a similar rate. Other minor metabolites, the N-oxide, the 6-hydroxy compound, and the sulfate conjugate of the 6-hydroxy metabolite are not active at the 5-HT1B/1D receptor.
Status:
US Approved Rx
(2012)
Source:
NDA202813
(2012)
Source URL:
First approved in 1976
Source:
VANCERIL by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2016)
Source:
ANDA208162
(2016)
Source URL:
First approved in 1963
Source:
FLAGYL by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Status:
US Approved Rx
(2020)
Source:
NDA213422
(2020)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Status:
US Approved Rx
(2020)
Source:
NDA213422
(2020)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Status:
US Approved Rx
(2020)
Source:
NDA213422
(2020)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Status:
US Approved Rx
(2020)
Source:
NDA213422
(2020)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Status:
US Approved Rx
(2020)
Source:
NDA213422
(2020)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.