U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 91 - 100 of 102 results

Status:
Investigational
Source:
NCT00354250: Phase 2 Interventional Completed Recurrent Renal Cell Cancer
(2006)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ispinesib (SB-715992) is a potent, specific and reversible inhibitor of kinesin spindle protein (KSP). KSP, also known as HsEg5, is a kinesin that plays an essential role in the formation of a bipolar mitotic spindle and is required for cell cycle progression through mitosis. Ispinesib is the highly specific small-molecule inhibitor of KSP tested for the treatment of human disease. It causes mitotic arrest and growth inhibition in several human tumor cell lines and is currently being tested in multiple phase II clinical trials for treatment of the breast cancer and renal cell cancer.
Status:
Investigational
Source:
NCT01285414: Phase 2 Interventional Completed Glioblastoma Multiforme
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Veribulin is a novel microtubule destabilizer that both functions as a potent cytotoxin and acts as a vascular disrupting agent (VDA). It binds to the same (or nearby) sites on β-tubulin as colchicine. It is capable of evading multidrug resistance pumps and, thus, achieves high CNS concentrations. It is efficacious in multiple xenograft models without CNS toxicity. Veribulin had previously demonstrated pre-clinical and clinical activity in multiple tumor types. Veribulin is in phase II clinical trial for the treatment of Glioblastoma and Malignant melanoma.
Status:
Investigational
Source:
NCT02279602: Phase 2 Interventional Completed Neuroendocrine Tumors
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Fosbretabulin (Combretastatin A4 phosphate, CA4P) is the lead compound of a relatively new class of agents termed vascular disrupting agents that target existing tumor blood vessels. Rapid tumor blood flow shutdown has been demonstrated in preclinical models and patients by various techniques such as dynamic contrast-enhanced MRI, perfusion computed tomography and PET scans following CA4P infusion. CA4P typically induces rapid tumor necrosis in the center of the tumor and leaves a rim of viable cells in the periphery. In oncology, CA4P does not appear to be that active by itself, but may be more efficacious when combined with chemotherapy, antiangiogenic therapy and radiation therapy. Combretastatin was initially isolated from the root bark of the South African Bush willow Combretum caffrum in 1982 by Pettit and colleagues at the Arizona State University (AZ, USA). Combretastatin A4 phosphate binds avidly to tubulin at the colchicine-binding site to inhibit microtubule assembly and destabilize the cytoskeleton. CA4P is a tubulin-binding agent that binds at or near the colchicine binding site of β-tubulin (Kd = 0.40 uM), inhibits tubulin assembly with IC50 of 2.4 uM. Fosbretabulin has orphan drug status in the EU and the US for the treatment of ATC (Anaplastic Thyroid Cancer). Later the development of this drug was discontinued.
Status:
Investigational
Source:
NCT00195325: Phase 1 Interventional Terminated Tumors
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Cevipabulin is a synthetic, water-soluble tubulin-binding agent with potential antineoplastic activity. Cevipabulin appears to bind at the vinca-binding site on tubulin but seems to act more similar to taxane-site binding agents in that it enhances tubulin polymerization and does not induce tubulin depolymerization. The disruption in microtubule dynamics may eventually inhibit cell division and reduce cellular growth.
Status:
Investigational
Source:
INN:cemadotin [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Cemadotin (LU103793) is a cytotoxic water-soluble pentapeptide analogue of dolastatin 15. The dolastatin peptides were originally isolated from the shell-less mollusc Dolabella auricularia. Cemadotin blocks cells at mitosis. It exerts its antitumor activity by suppressing spindle microtubule dynamics through a distinct molecular mechanism by binding at a novel site in tubulin. Cemadotin was in phase II clinical trials as a promising cancer chemotherapeutic agent. However, this agent appears to be inactive in the treatment of advanced non-small-cell lung cancer and other tumors and this research has been discontinued.
Status:
Investigational
Source:
NCT00078455: Phase 2 Interventional Completed Non-Small-Cell Lung Carcinoma
(2003)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Tasidotin (also known as ILX-651), an orally active synthetic microtubule-targeted derivative of the marine depsipeptide dolastatin-15. It was suggested, that tasidotin has a unique mechanism of action. The drug inhibits cell proliferation by suppressing spindle microtubule dynamics through a reduction of the shortening rate, reduction of the switching frequency from growth to shortening, and reduction of the time microtubules grow. Tasidotin was studied in clinical trials phase II in patients with locally advanced or metastatic non-small cell lung carcinoma, in patients with hormone-refractory prostate cancer, and in patients with inoperable locally advanced or metastatic melanoma. However, no new results were published last 5 years. It was suggested that tasidotin is no longer being used as single or even components of multiple agents today.
Status:
Investigational
Source:
INN:vinzolidine
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Vinzolidine (also known as LY104208), a semisynthetic vinblastine derivative that was developed as an antitumor agent. Vinzolidine participated in clinical trials phase II in the oral formulation in patients with lymphoma, particularly Hodgkin's disease. In addition, it was studied in patients with Kaposi's sarcoma, non-small cell lung cancer, colorectal cancer, and breast cancer. It was found significant side effects included neurotoxicity and dose-related myelosuppression. As a result, was suggested intravenous route of administration for vinzolidine could be more safely. However, the phase I trial of intravenous vinzolidine was shown no antitumor activity. The further development of this drug was discontinued.
Estramustine is an antineoplastic agent indicated in the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate. Estramustine is a combination of estradiol with nitrogen mustard. In vivo, the nitrogen-mustard moiety becomes active and participates in alkylation of DNA or other cellular components. This causes DNA damage in rapidly dividing cancerous cells leading to cell death and ideally, tumor shrinkage. Also, due to the drugs estrogen component, it can bind more selectively to active estrogen receptors. Used for the palliative treatment of patients with metastatic and/or progressive carcinoma of the prostate.
Noscapine (also known as Narcotine, Nectodon, Nospen, Anarcotine and (archaic) Opiane) is a benzylisoquinoline alkaloid from plants of the poppy family, without painkilling properties. This agent is primarily used for its antitussive (cough-suppressing) effects. Noscapine is often used as an antitussive medication. A 2012 Dutch guideline, however, does not recommend its use for coughing. Noscapine can increase the effects of centrally sedating substances such as alcohol and hypnotics. Noscapine should not be taken in conjunction with warfarin as the anticoagulant effects of warfarin may be increased. Noscapine, and its synthetic derivatives called noscapinoids, are known to interact with microtubules and inhibit cancer cell proliferation. Mechanisms for its antitussive action are unknown, although animal studies have suggested central nervous system as a site of action. Furthermore, noscapine causes apoptosis in many cell types and has potent antitumor activity against solid murine lymphoid tumors (even when the drug was administered orally) and against human breast and bladder tumors implanted in nude mice. Because noscapine is water-soluble and absorbed after oral administration, its chemotherapeutic potential in human cancer merits thorough evaluation. Antifibrotic effect of noscapine based on novel mechanism, which it shows through EP2 prostaglandin E2 receptor-mediated activation of protein kinase A.
Status:
Possibly Marketed Outside US
Source:
Javlor by Fabre, P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Vinflunine (Javlor) is the first fluorinated microtubule inhibitor belonging to the Vinca alkaloids family. Vinflunine, at the lowest effective concentrations, interacts with the Vinca alkaloid binding site on tubulin, suppresses microtubule dynamics (switching at microtubule ends between phases of slow growth and rapid shortening) and microtubule treadmilling (growth at the plus end and shortening at the minus end of the microtubule), causes cell cycle arrest which appears on fluorescence-activated cell sorting analysis as a G2 + M phase arrest, and is associated with an accumulation of cells in mitosis leading to cell death via apoptosis. Vinflunine has been been approved for advanced or metastatic transitional cell carcinoma of the urothelial tract. Pierre Fabre submitted an extension to the EU authorisation to add treatment of advanced breast cancer.

Showing 91 - 100 of 102 results