U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 521 - 530 of 2052 results

Status:
Investigational
Source:
NCT01283594: Phase 2/Phase 3 Interventional Completed Parkinson's Disease
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Tozadenant (SYN115) is an adenosine A2A receptor antagonist initially developed for treatment of Parkinson's disease but may also have utility in other CNS disorders. A2a receptors are expressed in high concentration in the striatum of the brain and play an important role in regulating motor function. Tozadenant blocks the effect of endogenous adenosine at the A2a receptors, resulting in the potentiation of the effect of dopamine at the D2 receptor and inhibition of the effect of glutamate at the mGluR5 receptor. This enables restoration of motor function in Parkinson’s disease. Tozadenant has the potential for use as mono-therapy or adjunctive therapy in combination with L-Dopa and dopamine agonists for the treatment of the motor and non-motor symptoms associated with Parkinson’s disease. may also have neuroprotective effects, which raises the possibility that it could slow the deterioration of dopamine producing cells and modify disease progression. As was reported in international, multicentre, phase 2b, randomised, double-blind, placebo-controlled, parallel-group, dose-finding clinical trial of tozadenant in levodopa-treated patients with Parkinson's disease who had motor fluctuations tozadenant at 120 or 180 mg twice daily was generally well tolerated and was effective at reducing off-time.
Status:
Investigational
Source:
NCT02585934: Phase 3 Interventional Completed Alzheimer's Disease
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Intepirdine, also known as SB-742457, RVT-101, was originally developed by GlaxoSmithKline (GSK) as an antagonist of the serotonin receptor 6 (5-HT6). GSK sold the rights for further study of this drug to Axovant Sciences in 2014. Intepirdine is in phase 3 clinical trial for Alzheimer's and in a phase 2 trial for dementia with Lewy bodies.
Status:
Investigational
Source:
NCT01750957: Phase 2 Interventional Completed Fragile X Syndrome
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Basimglurant is a potent, selective, and safe mGlu5 inhibitor with good oral bioavailability and long half-life supportive of once-daily administration, good brain penetration, and high in vivo potency. It has antidepressant properties that are corroborated by its functional magnetic imaging profile as well as anxiolytic-like and antinociceptive features. In electroencephalography recordings, basimglurant shows wake-promoting effects followed by increased delta power during subsequent non-rapid eye movement sleep. Basimglurant has favorable drug-like properties, a differentiated molecular mechanism of action, and antidepressant-like features that suggest the possibility of also addressing important comorbidities of MDD including anxiety and pain as well as daytime sleepiness and apathy or lethargy. Basimglurant is being under development by Roche for the treatment of treatment-resistant depression (as an adjunct). It is in phase II clinical trials for this indication.
Status:
Investigational
Source:
NCT00659802: Phase 2 Interventional Completed Ulcerative Colitis
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as 'creat'. Andrographolide has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress. Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). The properties of andrographolide, such as its ability to induce apoptosis of cancer cells and inhibition of DTH, its anti-oxidative and cytoprotective effect, and its ability to enhance CTLs and NK cell activation makes it a potent antiviral agent. Andrographolide inhibited the growth of human breast, prostate, and hepatoma tumors. Andrographolide could be a potent anticancer agent when used in combination with other chemotherapeutic agents.
Status:
Investigational
Source:
NCT02272478: Phase 2/Phase 3 Interventional Unknown status Acute Myeloid Leukaemia
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Ganetespib (formerly called STA-9090) is a novel, injectable resorcinolic triazolone small molecule inhibitor of Hsp90, developed by Synta Pharmaceuticals. Ganetespib inhibits the growth of many tumor types in vitro and in vivo including AML, ALL, CML, NHL, neuroblastoma, Ewing sarcoma, rhabdoid cancer, rhabdomyosarcoma, melanoma, and carcinomas of the breast, lung, prostate, bladder and colon7-10,14-27. Ganetespib has being studied in multiple adult oncology indications. The 50% inhibitory concentrations (IC50) for Ganetespib against malignant mast cell lines are 10-50 times lower than that for 17-AAG, indicating that triazolone class of HSP90 inhibitors likely exhibits greater potency than geldanamycin based inhibitors. Ganetespib inhibits MG63 cell lines with IC50 of 43 nM. Ganetespib binds to the ATP-binding domain at the N-terminus of Hsp90 and serves as a potent Hsp90 inhibitor by causing degradation of multiple oncogenic Hsp90 client proteins including HER2/neu, mutated EGFR, Akt, c-Kit, IGF-1R, PDGFRα, Jak1, Jak2, STAT3, STAT5, HIF-1α, CDC2 and c-Met as well as Wilms' tumor 1. Ganetespib, at low nanomolar concentrations, potently arrests cell proliferation and induces apoptosis in a wide variety of human cancer cell lines, including many receptor tyrosine kinase inhibitor- and tanespimycin-resistant cell lines. Ganetespib exhibits potent cytotoxicity in a range of solid and hematologic tumor cell lines, including those that express mutated kinases that confer resistance to small-molecule tyrosine kinase inhibitors. Ganetespib has been studied in 5 completed Synta-sponsored clinical trials (Studies 9090-02, 9090-03, 9090-04, 9090-05, and 9090-07) and 3 completed Synta-sponsored studies in normal healthy volunteers (9090-12, 9090-13, and 9090-15). Ganetespib is currently being studied in 6 Synta-sponsored clinical trials. Studies include: one Phase 1 study, three Phase 2 studies, one Phase 2b study, and one Phase 3 study. Ganetespib is also being studied in 24 Investigator Sponsored Trials (ISTs)
Status:
Investigational
Source:
NCT00952588: Phase 2/Phase 3 Interventional Completed Acute Myeloid Leukemia
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Barasertib (AZD1152) is a dihydrogen phosphate prodrug of a pyrazoloquinazoline Aurora kinase inhibitor [AZD1152–hydroxyquinazoline pyrazol anilide (HQPA)] and is converted rapidly to the active AZD1152-HQPA in plasma. AstraZeneca was developing the aurora kinase inhibitor, barasertib (AZD 1152) as a therapeutic for cancer. AZD1152-HQPA is a highly potent and selective inhibitor of Aurora B (Ki, 0.36nmol/L) compared with Aurora A (Ki, 1,369nmol/L) and has a high specificity versus a panel of 50 other kinases. Consistent with inhibition of Aurora B kinase, addition of AZD1152-HQPA to tumour cells in vitro induces chromosome misalignment, prevents cell division, and consequently reduces cell viability and induces apoptosis. Barasertib (AZD1152) potently inhibited the growth of human colon, lung, and haematologic tumour xenografts (mean tumour growth inhibition range, 55% to ≥100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumour-bearing athymic rats treated i.v. with Barasertib (AZD1152) revealed a temporal sequence of phenotypic events in tumours: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumours. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of Barasertib (AZD1152) treatment. Barasertib (AZD1152) was in phase III for the treatment of Acute myeloid leukaemia, but later these studies were discontinued.
Status:
Investigational
Source:
INN:imiloxan
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Imiloxan is a highly selective alpha2B adrenoceptor antagonist and was developed for depression in the 1980s. In Phase 1 clinical trials imiloxan dosing led to hypersensitivity reactions; the molecule's development was discontinued.
Status:
Investigational
Source:
NCT00504790: Phase 1 Interventional Completed Cancer
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

GSK-923295 is a small-molecule inhibitor of the mitotic kinesin centromere-associated protein E (CENP-E), and the third novel drug candidate to arise from Cytokinetics' broad strategic alliance with GlaxoSmithKline (GSK). GSK-923295 demonstrated a broad spectrum of activity against a range of human tumor xenografts grown in nude mice, including models of colon, breast, ovarian, lung and other tumors. GSK-923295 is the first drug candidate to enter human clinical trials that specifically targets CENP-E and is currently in Phase I human clinical trials being conducted by GSK. GSK-923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.
Status:
Investigational
Source:
NCT00450502: Phase 1 Interventional Completed Neoplasms
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Daniquidone, also known as Batracylin, is a water-insoluble heterocyclic amide with potential antineoplastic activity. Daniquidone inhibits topoisomerases I and II, thereby inhibiting DNA replication and repair, and RNA and protein synthesis. Batracylin advanced as an anticancer agent to Phase I clinical trials where dose limiting hemorrhagic cystitis (bladder inflammation and bleeding) was observed.
Status:
Investigational
Source:
NCT00160225: Phase 2 Interventional Completed Hypertension
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



The new chemical entity KC12615 is a potent f neutral endopeptidase inhibitor with additional endothelin-converting enzyme (ECE)–inhibitory activity.2 KC12615 is the hydrolyzed form of the oral prodrug SLV306 (daglutril). In plasma, the compound increases natriuretic peptide levels and prevents the formation of endothelin-1 by inhibiting the degradation of its precursor, big endothelin. It is investigated for use/treatment in congestive heart failure and hypertension.