{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1982)
Source:
NDA018667
(1982)
Source URL:
First approved in 1966
Source:
NDA016273
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Status:
US Approved Rx
(1989)
Source:
NDA050655
(1989)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Nafcillin is a beta-lactam antibiotic of penicillin class. As a beta-lactamase-resistant penicillin, it is used to treat infections caused by Gram-positive bacteria, in particular, species of staphylococci that are resistant to other penicillins.
Status:
US Approved Rx
(2023)
Source:
NDA217110
(2023)
Source URL:
First approved in 1964
Source:
ALKERAN by APOTEX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Status:
US Approved Rx
(2006)
Source:
NDA021983
(2006)
Source URL:
First approved in 1964
Source:
PROTOPAM CHLORIDE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pralidoxime is a cholinesterase reactivator used as the antidote to organophosphate pesticides or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. Acetylcholinesterase inhibition causes acetylcholine to accumulate in synapses, producing continuous stimulation of cholinergic fibers throughout the nervous systems. If given within 24 hours after organophosphate exposure, pralidoxime reactivates the acetylcholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. Pralidoxime is indicated as an adjunct in the treatment of moderate and severe poisoning caused by organophosphate pesticides that have anticholinesterase activity or by chemicals with anticholinesterase activity such as some chemicals used as nerve agents during chemical warfare. Pralidoxime is also indicated as an adjunct in the management of the overdose of cholinesterase inhibitors, such as ambenonium, neostigmine, and pyridostigmine, used in the treatment of myasthenia gravis. Pralidoxime, used in conjunction with atropine, reverses nicotinic effects, such as muscle weakness and fasciculation, respiratory depression, and central nervous system (CNS) effects, associated with toxic exposure to organophosphate anticholinesterase pesticides and chemicals and with cholinesterase inhibitor overdose. Atropine, by antagonizing the action of cholinesterase inhibitors at muscarinic receptor sites, reverses muscarinic effects, such as tracheobronchial and salivary secretion, bronchoconstriction, bradycardia, and, to a moderate extent, CNS effects.
Status:
US Approved Rx
(1988)
Source:
ANDA071484
(1988)
Source URL:
First approved in 1963
Source:
ONCOVIN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Vincristine is a vinca alkaloid antineoplastic agent used as a treatment for various cancers including breast cancer, Hodgkin's disease, Kaposi's sarcoma, and testicular cancer. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vincristine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. Vincristine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis.Vincristine was marketed under the brand name Oncovin, but was discontinued. In 2012 the FDA approved a Liposomal formulation of Vincristine, named MARQIBO KIT.
Status:
US Approved Rx
(2015)
Source:
ANDA040486
(2015)
Source URL:
First approved in 1962
Source:
SKELAXIN by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. The mechanism of action of metaxalone in humans has not been established, but may be due to general central nervous system depression. Metaxalone has no direct action on the contractile mechanism of striated muscle, the motor end plate, or the nerve fiber. Skelaxin is available in an 800 mg scored tablet. Metaxalone relatively low incidence of side effects. The most common adverse reactions to Metaxalone tablets include drowsiness, dizziness, headache, and nervousness or “irritability”, nausea, vomiting, gastrointestinal upset.
Status:
US Approved Rx
(2016)
Source:
ANDA206392
(2016)
Source URL:
First approved in 1961
Source:
PERSANTINE by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dipyridamole, a non-nitrate coronary vasodilator that also inhibits platelet aggregation, is combined with other anticoagulant drugs, such as warfarin, to prevent thrombosis in patients with valvular or vascular disorders. Dipyridamole is also used in myocardial perfusion imaging, as an antiplatelet agent, and in combination with aspirin for stroke prophylaxis. Dipyridamole likely inhibits both adenosine deaminase and phosphodiesterase, preventing the degradation of cAMP, an inhibitor of platelet function. This elevation in cAMP blocks the release of arachidonic acid from membrane phospholipids and reduces thromboxane A2 activity. Dipyridamole also directly stimulates the release of prostacyclin, which induces adenylate cyclase activity, thereby raising the intraplatelet concentration of cAMP and further inhibiting platelet aggregation. Used for as an adjunct to coumarin anticoagulants in the prevention of postoperative thromboembolic complications of cardiac valve replacement and also used in prevention of angina.
Status:
US Approved Rx
(1987)
Source:
ANDA089515
(1987)
Source URL:
First approved in 1961
Source:
VELBAN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Vinblastine is a Vinca alkaloid obtained from the Madagascar periwinkle plant. Vinca alkaloids were found out in the 1950's by Canadian scientists, Robert Noble and Charles Beer for the first time. Medicinal applications of this plant lead to the monitoring of these compounds for their hypoglycemic activity, which is of little importance compared to their cytotoxic effects. They have been used to treat diabetes, high blood pressure and the drugs have even been used as disinfectants. Nevertheless, the vinca alkaloids are so important for being cancer fighters. The mechanism of action of vinblastine sulfate has been related to the inhibition of microtubule formation in the mitotic spindle,
resulting in an arrest of dividing cells at the metaphase stage. Vinblastine is an antineoplastic agent used to treat Hodgkin's disease, non-Hodgkin's lymphomas, mycosis fungoides, cancer of the testis, Kaposi's sarcoma, Letterer-Siwe disease, as well as other cancers.
Status:
US Approved Rx
(2022)
Source:
ANDA215847
(2022)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Status:
US Approved Rx
(2018)
Source:
NDA210331
(2018)
Source URL:
First approved in 1961
Source:
NDA012787
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Fluocinolone Acetonide is a corticosteroid that binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents Fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver. Fluocinolone Acetonide is used for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also for the treatment of chronic non-infectious uveitis affecting the posterior segment of the eye (Retisert). Preparations containing Fluocinolone Acetonide were first marketed under the name Synalar.