U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 151 - 160 of 1217 results


Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Letrozole (trade name Femara), a nonsteroidal aromatase inhibitor. Femara is indicated for the adjuvant treatment of postmenopausal women with hormone receptor positive early breast cancer. Also is indicated for the extended adjuvant treatment of early breast cancer in postmenopausal women, who have received 5 years of adjuvant tamoxifen therapy. Femara has to be used for first-line treatment of postmenopausal women with hormone receptor positive or unknown, locally advanced or metastatic breast cancer and for the treatment of advanced breast cancer in postmenopausal women with disease progression following antiestrogen therapy. Treatment of breast cancer thought to be hormonally responsive (i.e., estrogen and/or progesterone receptor positive or receptor unknown) has included a variety of efforts to decrease estrogen levels (ovariectomy, adrenalectomy, hypophysectomy) or inhibit estrogen effects (antiestrogens and progestational agents). These interventions lead to decreased tumor mass or delayed progression of tumor growth in some women. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Letrozole inhibits the conversion of androgens to estrogens. Letrozole selectively inhibits gonadal steroidogenesis but has no significant effect on adrenal mineralocorticoid or glucocorticoid synthesis. Letrozole inhibits the aromatase enzyme by competitively binding to the heme of the cytochrome P450 subunit of the enzyme, resulting in a reduction of estrogen biosynthesis in all tissues. Treatment of women with letrozole significantly lowers serum estrone, estradiol and estrone sulfate and has not been shown to significantly affect adrenal corticosteroid synthesis, aldosterone synthesis, or synthesis of thyroid hormones. Letrozole is rapidly and completely absorbed from the gastrointestinal tract and absorption is not affected by food. Metabolism to a pharmacologically inactive carbinol metabolite (4,4'¬ methanol-bisbenzonitrile) and renal excretion of the glucuronide conjugate of this metabolite is the major pathway of letrozole clearance. In human microsomes with specific CYP isozyme activity, CYP3A4 metabolized letrozole to the carbinol metabolite while CYP2A6 formed both this metabolite and its ketone analog. In human liver microsomes, letrozole strongly inhibited CYP2A6 and moderately inhibited CYP2C19. The most common side effects are sweating, hot flashes, arthralgia (joint pain), and fatigue
Mirtazapine, originally known as ORG 3770, was first synthesized by the Department of Medicinal Chemistry of NV Organon in the Netherlands (Kaspersen et al. 1989). First approved for use in major depression in the Netherlands in 1994, mirtazapine was introduced in the United States in 1996. The antidepressant mirtazapine has a dual mode of action. It is a noradrenergic and specific serotonergic antidepressant (NaSSA) that acts by antagonizing the adrenergic alpha2-autoreceptors and alpha2-heteroreceptors as well as by blocking 5-HT2 and 5-HT3 receptors. It enhances, therefore, the release of norepinephrine and 5-HT1A-mediated serotonergic transmission. This dual mode of action may conceivably be responsible for mirtazapine's rapid onset of action.
Levofloxacin is the L-isomer of the racemate, ofloxacin, a quinolone antimicrobial agent. Levofloxacin is used for oral and intravenous administration. Levofloxacin is sold under brand name levaquin and is used to treat infections in adults (≥18 years of age) caused by designated, susceptible bacteria such as, pneumonia: nosocomial and community acquired; skin and skin structure infections: complicated and uncomplicated; chronic bacterial prostatitis; inhalational anthrax. In addition this drug is used to treat plague; urinary tract infections: complicated and uncomplicated; acute pyelonephritis; acute bacterial exacerbation of chronic bronchitis and acute bacterial sinusitis. Levofloxacin, like other fluoroquinolones, inhibits the bacterial DNA gyrase, halting DNA replication. This results in strand breakage on a bacterial chromosome, supercoiling, and resealing. In addition, levofloxacin inhibits a bacterial type II topoisomerase.
Docetaxel was protected by patents (U.S. patent and European patent) which were owned by Sanofi-Aventis, and so was available only under the Taxotere brand name internationally. The European patent expired in 2010. Docetaxel is a clinically well-established anti-mitotic chemotherapy medication used for the treatment of patients with locally advanced or metastatic breast cancer after failure of prior chemotherapy. Also used as a single agent in the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior platinum-based chemotherapy. It is also used in combination with prednisone, in the treatment of patients with androgen independent (hormone refractory) metastatic prostate cancer. Furthermore, docetaxel has uses in the treatment of gastric adenocarcinoma and head and neck cancer. Docetaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, docetaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, docetaxel binds to the β-subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of docetaxel locks these building blocks in place. The resulting microtubule/docetaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that docetaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Olanzapine is a novel antipsychotic agent marketed by Lilly & Co. It has a pleotrophic pharmacology and affects dopaminergic, serotonergic, muscarinic and adrenergic activities. Olanzapine is used to treat the symptoms of psychotic conditions such as schizophrenia and bipolar disorder (manic depression) in adults and children who are at least 13 years old. Olanzapine is sometimes used together with other antipsychotic medications or antidepressants. The mechanism of action of olanzapine, as with other drugs having efficacy in schizophrenia, is unknown. However, it has been proposed that this drug’s efficacy in schizophrenia is mediated through a combination of dopamine and serotonin type 2 (5HT2) antagonism. The mechanism of action of olanzapine in the treatment of acute manic or mixed episodes associated with bipolar I disorder is unknown. Olanzapine treatment led to rapid phosphorylation of kinases from all three pathways in PC12 cells. Phosphorylation of Akt was blocked with selective inhibitors (wortmannin and LY294002), which implicates phosphoinositide 3-kinase (PI3K) in the signaling cascade. Short-term mitogenic effects of olanzapine were abolished with a selective inhibitor of Akt, but not by inhibition of the ERK pathway. Olanzapine is metabolized by the cytochrome P450 system; principally by isozyme 1A2 and to a lesser extent by 2D6. By these mechanisms more than 40% of the oral dose, on average, is removed by the hepatic first-pass effect. Drugs or agents that increase the activity of CYP1A2, notably tobacco smoke, may significantly increase hepatic first-pass clearance of Olanzapine; conversely, drugs which inhibit 1A2 activity (examples: Ciprofloxacin, Fluvoxamine) may reduce Olanzapine clearance. The most common side effects appear to be somnolence and weight gain. About 11% of patients gain weight -especially if on a high starting dose and if they were underweight pre-treatment. Sexual dysfunction is a problem for many patients, although sexual dysfunction in schizophrneia does not appear to be primarily attributable to drugs.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Nisoldipine is a 1,4-dihydropyridine derivative with an outstanding vascular selectivity. As a specific calcium antagonist, it shortens the action potential and causes electromechanical uncoupling in ventricular myocardium. However, this effect, resulting in a negative inotropic action, appears at 100–1000 times higher concentrations of nisoldipine in comparison with its inhibition of calcium-dependent vascular contractions. Detailed analyses of pharmacological effects revealed additional properties such as enhancement of sodium excretion, an interaction with the reninangiotensin-aldosterone system and a protective effect against acute renal ischaemia, that may contribute to its therapeutic efficacy. Nisoldipine was developed at Bayer then licensed to Zeneca and marketed in the United States as SULAR. SULAR is indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. The mechanism of the therapeutic effect of nisoldipine is complex. It involves a decrease of the total peripheral vascular resistance (reduction of afterload) and an increase in coronary blood flow. Moreover, nisoldipine obviously normalises the impaired volume homoeostasis by improving renal function and thus reduces the need for activation of the ANP system. In the advanced stages of hypertension, nisoldipine prevents deleterious calcium overload and the resulting tissue damage.
Iopromide is a molecule used as a contrast medium. It is a low osmolar, non-ionic contrast agent for intravascular use. It is commonly used in radiographic studies such as intravenous urograms, brain computer tomography (CT) and CT pulmonary angiograms (CTPAs). It appears to increase the risk of biguanide induced lactic acidosis. Interleukins are associated with an increased prevalence of delayed hypersensitivity reactions after iodinated contrast agent administration. Most common adverse reactions (>1%) are headache, nausea, injection site and infusion site reactions, vasodilatation, vomiting, back pain, urinary urgency, chest pain, pain, dysgeusia, and abnormal vision.
Ibutilide is a 'pure' class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels. Ibutilide is indicated for the rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm. Ibutilide is marketed as Corvert by Pfizer.
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Anastrozole (marketed under the trade name Arimidex by AstraZeneca) is a drug indicated in the treatment of breast cancer in post-menopausal women. It is used both in adjuvant therapy (i.e. following surgery) and in metastatic breast cancer. It decreases the amount of estrogens that the body makes. Anastrozole belongs in the class of drugs known as aromatase inhibitors. It inhibits the enzyme aromatase, which is responsible for converting androgens (produced by women in the adrenal glands) to estrogens. The growth of many cancers of the breast is stimulated or maintained by estrogens. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Anastrozole is a selective non-steroidal aromatase inhibitor. It significantly lowers serum estradiol concentrations and has no detectable effect on formation of adrenal corticosteroids or aldosterone.