U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 651 - 660 of 664 results

Status:
US Previously Marketed
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
US Previously Marketed
Source:
CAMOPRIM CT AMODIAQUINE by PD
(1961)
Source URL:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Status:
US Previously Marketed
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Quinacrine was initially developed as an anti-malarial drug marketed under the name Atabrine. Also it was approved for the teratment of ascites, however it was wothdrawn for both indication in 1995 and 2003, respectively. The drug is also used for the treatment of giardiasis, lupus, rheumatoid arthritis, refractory pulmonary effusion and pneumothorax, induce female sterilization etc. Proposed mechanisms of action include DNA intercalation interference with RNA transcription and translation, inhibition of succinate oxidation interference with electron transport, inhibition of cholinesterase, and inhibitor of phospholipase.
Quinacrine was initially developed as an anti-malarial drug marketed under the name Atabrine. Also it was approved for the teratment of ascites, however it was wothdrawn for both indication in 1995 and 2003, respectively. The drug is also used for the treatment of giardiasis, lupus, rheumatoid arthritis, refractory pulmonary effusion and pneumothorax, induce female sterilization etc. Proposed mechanisms of action include DNA intercalation interference with RNA transcription and translation, inhibition of succinate oxidation interference with electron transport, inhibition of cholinesterase, and inhibitor of phospholipase.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1921)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1921)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1921)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1921)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.

Showing 651 - 660 of 664 results