U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 451 - 460 of 1197 results


Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Difelikefalin (Korsuva™) is a synthetic peptide agonist of the kappa opioid receptor being developed by Cara Therapeutics for the treatment of pruritus. In August 2021, intravenous difelikefalin was approved in the USA for the treatment of moderate-to-severe pruritus associated with chronic kidney disease (CKD) in adults undergoing haemodialysis. Difelikefalin selectively acts on kappa opioid receptors in peripheral tissues, which contribute to pruritis and nociception. The activation of opioid receptors in peripheral neurons and keratinocytes reduces afferent (sensory) impulses towards the central nervous system, decreasing pain signals. Activating kappa opioid receptors on immune cells, including monocytes and T lymphocytes, decreases the release of pro-inflammatory chemicals such as prostaglandins.
Pralsetinib (GAVRETO™, Blueprint Medicines Corporation) is an orally-administered, next-generation, small-molecule selective rearranged during transfection (RET) inhibitor being developed for the treatment of various solid tumours. RET is a well described proto-oncogene present in multiple cancers including non-small cell lung cancer (NSCLC), papillary thyroid cancer, and medullary thyroid carcinoma. Pralsetinib is a kinase inhibitor of wild-type RET and oncogenic RET fusions (CCDC6-RET) and mutations (RET V804L, RET V804M and RET M918T) with half maximal inhibitory concentrations (IC50s) less than 0.5 nM. In purified enzyme assays, pralsetinib inhibited DDR1, TRKC, FLT3, JAK1-2, TRKA, VEGFR2, PDGFRb, and FGFR1 at higher concentrations that were still clinically achievable at Cmax. In cellular assays, pralsetinib inhibited RET at approximately 14-, 40-, and 12-fold lower concentrations than VEGFR2, FGFR2, and JAK2, respectively. Pralsetinib is approved for the treatment of RET fusion-positive metastatic NSCLC. In the pivotal phase I/II ARROW trial, pralsetinib demonstrated rapid and durable anti-tumour activity in patients with advanced RET fusion-positive NSCLC who were previously treated with platinum-based chemotherapy or were treatment-naïve. Pralsetinib also showed clinical activity against intracranial metastases arising from NSCLC. Pralsetinib had a manageable tolerability profile, with the most common grade 3 treatment-related adverse events being neutropenia, hypertension, anaemia and decreased white blood cell count.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Remimazolam is an intravenous benzodiazepine sedative-hypnotic with rapid onset and offset of action. This compound undergoes organ-independent metabolism to an inactive metabolite. Like other benzodiazepines, remimazolam can be reversed with flumazenil to rapidly terminate sedation and anesthesia. Phase I and II clinical trials have shown that remimazolam is safe and effective when used for procedural sedation. Phase III clinical trials have been completed investigating efficacy and safety in patients undergoing bronchoscopy and colonoscopy. The developer of this drug has suggested that intensive care unit sedation (beyond 24 hours) could be another possible indication for further development, since it is unlikely that prolonged infusions or higher doses of remimazolam would result in accumulation and extended effect.
Amisulpride, a benzamide derivative, shows a unique therapeutic profile being atypical antipsychotic. At low doses, it enhances dopaminergic neurotransmission by preferentially blocking presynaptic dopamine D2/D3 autoreceptors. At higher doses, amisupride antagonises postsynaptic dopamine D2 and D3 receptors, preferentially in the limbic system rather than the striatum, thereby reducing dopaminergic transmission. In addition its antagonism at serotonin 5-HT7 receptors likely underlies the antidepressant actions. Amisulpride is approved for clinical use in treating schizophrenia in a number of European countries and also for treating dysthymia, a mild form of depression, in Italy.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Remimazolam is an intravenous benzodiazepine sedative-hypnotic with rapid onset and offset of action. This compound undergoes organ-independent metabolism to an inactive metabolite. Like other benzodiazepines, remimazolam can be reversed with flumazenil to rapidly terminate sedation and anesthesia. Phase I and II clinical trials have shown that remimazolam is safe and effective when used for procedural sedation. Phase III clinical trials have been completed investigating efficacy and safety in patients undergoing bronchoscopy and colonoscopy. The developer of this drug has suggested that intensive care unit sedation (beyond 24 hours) could be another possible indication for further development, since it is unlikely that prolonged infusions or higher doses of remimazolam would result in accumulation and extended effect.
Fostemsavir (BMS-663068) is an investigational attachment inhibitor with a unique mechanism of action. It is a prodrug of temsavir, which binds to HIV envelope glycoprotein 120 (gp120), thereby preventing viral attachment to the host CD4 cell surface receptor. In the absence of effective binding of HIV gp120 with the host CD4 receptor, HIV does not enter the host cell. Because fostemsavir has a novel mechanism of action, the drug should have full activity against HIV strains that have developed resistance to other classes of antiretroviral medications. In a phase 2b study of treatment-experienced individuals, fostemsavir appeared to be well tolerated. Phase 3 studies are ongoing.
Fostemsavir (BMS-663068) is an investigational attachment inhibitor with a unique mechanism of action. It is a prodrug of temsavir, which binds to HIV envelope glycoprotein 120 (gp120), thereby preventing viral attachment to the host CD4 cell surface receptor. In the absence of effective binding of HIV gp120 with the host CD4 receptor, HIV does not enter the host cell. Because fostemsavir has a novel mechanism of action, the drug should have full activity against HIV strains that have developed resistance to other classes of antiretroviral medications. In a phase 2b study of treatment-experienced individuals, fostemsavir appeared to be well tolerated. Phase 3 studies are ongoing.
Fostemsavir (BMS-663068) is an investigational attachment inhibitor with a unique mechanism of action. It is a prodrug of temsavir, which binds to HIV envelope glycoprotein 120 (gp120), thereby preventing viral attachment to the host CD4 cell surface receptor. In the absence of effective binding of HIV gp120 with the host CD4 receptor, HIV does not enter the host cell. Because fostemsavir has a novel mechanism of action, the drug should have full activity against HIV strains that have developed resistance to other classes of antiretroviral medications. In a phase 2b study of treatment-experienced individuals, fostemsavir appeared to be well tolerated. Phase 3 studies are ongoing.
Fostemsavir (BMS-663068) is an investigational attachment inhibitor with a unique mechanism of action. It is a prodrug of temsavir, which binds to HIV envelope glycoprotein 120 (gp120), thereby preventing viral attachment to the host CD4 cell surface receptor. In the absence of effective binding of HIV gp120 with the host CD4 receptor, HIV does not enter the host cell. Because fostemsavir has a novel mechanism of action, the drug should have full activity against HIV strains that have developed resistance to other classes of antiretroviral medications. In a phase 2b study of treatment-experienced individuals, fostemsavir appeared to be well tolerated. Phase 3 studies are ongoing.
Selumetinib (AZD6244 or ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of Ras-Raf-mitogen-activated protein kinase kinase (MEK1/2). This inhibition can prevent ERK activation, disrupt downstream signal transduction, and inhibit cancer cell proliferation and survival. Selumetinib has shown tumour suppressive activity in multiple rodent models of human cancer including melanoma, pancreatic, colon, lung, and breast cancers. AstraZeneca is responsible for development and commercialization of selumetinib.