U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1041 - 1050 of 1197 results

Status:
Investigational
Source:
NCT01750957: Phase 2 Interventional Completed Fragile X Syndrome
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Basimglurant is a potent, selective, and safe mGlu5 inhibitor with good oral bioavailability and long half-life supportive of once-daily administration, good brain penetration, and high in vivo potency. It has antidepressant properties that are corroborated by its functional magnetic imaging profile as well as anxiolytic-like and antinociceptive features. In electroencephalography recordings, basimglurant shows wake-promoting effects followed by increased delta power during subsequent non-rapid eye movement sleep. Basimglurant has favorable drug-like properties, a differentiated molecular mechanism of action, and antidepressant-like features that suggest the possibility of also addressing important comorbidities of MDD including anxiety and pain as well as daytime sleepiness and apathy or lethargy. Basimglurant is being under development by Roche for the treatment of treatment-resistant depression (as an adjunct). It is in phase II clinical trials for this indication.
Status:
Investigational
Source:
NCT00134199: Phase 2/Phase 3 Interventional Completed Obesity
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Otenabant (CP-945,598) is Pfizer developed as a potent and selective cannabinoid receptor CB1 antagonist with Ki of 0.7 nM, which exhibits 10,000-fold greater selectivity against human CB2 receptor, for treatment of obesity. In clinical trial III Pfizer decided to discontinue the development program based on changing regulatory perspectives on the risk/benefit profile of the CB1 class and likely new regulatory requirements for approval.
Tozasertib, originally developed as VX-680 by Vertex (Cambridge, MA) and later renamed MK-0457 by Merck (Whitehouse Station, NY), was the first aurora kinase inhibitor to be tested in clinical trials. The drug, a pyrimidine derivative, has affinity for all aurora family members at nanomolar concentrations with inhibitory constant values (Ki(app)) of 0.6, 18, and 4.6 nM for aurora A, aurora B, and aurora C, respectively. Preclinical studies confirmed that tozasertib inhibited both aurora A and aurora B kinase activity, and activity has been reported against prostate, thyroid, ovarian, and oral squamous cancer cell lines. Upon treatment with tozasertib, cells accumulate with a 4N DNA content due to a failure of cytokinesis. This ultimately leads to apoptosis, preferentially in cells with a compromised p53 function. Tozasertib is an anticancer chemotherapeutic pan-aurora kinase (AurK) inhibitor that also inhibits FMS-like tyrosine kinase 3 (FLT3) and Abl. Tozasertib is currently in clinical trials as a potential treatment for acute lymphoblastic leukemia (ALL). In cellular models of cancer, tozasertib activates caspase-3 and PARP and decreases expression of HDAC, increasing apoptosis and inhibiting cell growth. In other cellular models, tozasertib inhibits cell proliferation and metastasis by blocking downstream ERK signaling and downregulating cdc25c and cyclin B. This compound also decreases tumor growth in an in vivo model of prostate cancer.
Status:
Investigational
Source:
INN:tecalcet [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tecalcet (also known as KRN-568; NPS-R-568; R-568), is an oral calcium channel agonist potentially for the treatment of hyperparathyroidism. Calcimimetics, such as Tecalcet, are agonists and activate the calcium channel in a non-competitive fashion. Tecalcet does not compete directly with calcium that activates the receptor through binding in the extracellular domain of these receptors, but rather, calcimimetics such as Tecalcet, bind allosterically in the seven transmembranes to ‘sensitize’ the receptor to extracellular calcium. Tecalcet acts as an agonist of the calcium receptors of the parathyroid cells, causing a decrease in PTH release. Tecalcet also acts on the parafollicular cells (C-cells) of the thyroid gland, resulting in an increase in calcitonin release. These effects ultimately lead to a decrease in plasma calcium concentrations. Studies in rats have shown that oral administration of R-568 at doses ranging from 3 to 100 mg/kg caused a rapid (<30 minutes) decrease in plasma PTH concentrations and an increase in calcitonin concentrations, accompanied by a dose-dependent decrease in calcium concentrations. Tecalcet had been in phase II clinical trials by for the treatment of hyperparathyroidism, postmenopausal osteoporosis and rheumatic disorders in Japan and US. Development of Tecalcet has been discontinued.
Omtriptolide (previously known as PG490-88 or F60008), an immunosuppressant that has been shown to be the safe and potent antitumor agent and it has been approved entry into Phase I clinical trial for the treatment of prostate cancer in the USA. In addition, the drug is participating in phase I clinical trial for the treatment of myeloid leukemia. Experiments on animals have shown omtriptolide was highly effective in the prevention of murine graft-versus-host disease (GVHD). The immunosuppressive effect of the drug was mediated by inhibition of alloreactive T cell expansion through interleukin-2 production. However, this study was discontinued. Recently published article has shown omtriptolide possesses the potential as a prophylactic agent to prevent ischemia/reperfusion (I/R)-induced lung injury.
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Omtriptolide (previously known as PG490-88 or F60008), an immunosuppressant that has been shown to be the safe and potent antitumor agent and it has been approved entry into Phase I clinical trial for the treatment of prostate cancer in the USA. In addition, the drug is participating in phase I clinical trial for the treatment of myeloid leukemia. Experiments on animals have shown omtriptolide was highly effective in the prevention of murine graft-versus-host disease (GVHD). The immunosuppressive effect of the drug was mediated by inhibition of alloreactive T cell expansion through interleukin-2 production. However, this study was discontinued. Recently published article has shown omtriptolide possesses the potential as a prophylactic agent to prevent ischemia/reperfusion (I/R)-induced lung injury.
Status:
Investigational
Source:
NCT04307953: Phase 2 Interventional Recruiting Fibrodysplasia Ossificans Progressiva
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Saracatinib (AZD0530) is an oral, dual inhibitor of c-Src/Abl kinases initially developed by AstraZeneca for the treatment of cancer. The drug was tested for many neoplasms and reached phase III for ovarian cancer (in combination with paclitaxel), however without demonstrating any significant effect. Sarcatinib is also tested in patients with Alzheimer's Disease (Phase II). Its effect on Alzheimer's Disease patients is explained by inhibition of another kinase, Fyn, which is highly expressed in brain.
Status:
Investigational
Source:
NCT00908752: Phase 3 Interventional Completed Hepatocellular Carcinoma
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Brivanib is a pyrrolotriazine-based compound and an inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) with potential antineoplastic activity. It specifically targets and strongly binds to human VEGFR-2, a tyrosine kinase receptor and pro-angiogenic growth factor expressed almost exclusively on vascular endothelial cells. Blockade of VEGFR-2 by this agent may lead to an inhibition of VEGF-stimulated endothelial cell migration and proliferation, thereby inhibiting tumor angiogenesis. Brivanib has a moderate potency compared to VEGFR-2 against VEGFR-1 and FGFR-1 as well. Brivanib is suggested to be efficient in treatment of hepatocellular carcinoma (HCC). As first-line and as second-line therapy brivanib demonstrated promising antitumor activity and a manageable safety profile in patients with advanced, unresectable HCC in phase II clinical trials. On 3 march 2011, orphan designation was granted by the European Commission to Bristol-Myers Squibb for brivanib alaninate for the treatment of hepatocellular carcinoma.[
Status:
Investigational
Source:
INN:nemorubicin
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Nemorubicin, a doxorubicin derivative, is a DNA-intercalator, topoisomerase and RNA synthesis inhibitor that was undergoing development with Nerviano Medical Sciences (Nerviano MS; formerly Pharmacia Italia) for the treatment of solid tumours, specifically, the loco-regional treatment of primary liver tumours (hepatocellular carcinoma). The drug is active on tumors resistant to alkylating agents, topoisomerase II inhibitors and platinum derivatives. It works primarily through topoisomerase I inhibition. Of note, Nemorubicin is active in cells with upregulation of the nucleotide excision repair (NER) pathway, where current therapies fail. Nemorubicin is biotransformed in the liver into cytotoxic metabolites that may further contribute to render this drug highly active against primary liver tumors or liver metastases. Clinical trials were conducted in Europe, US and China with Nemorubicin given at different dose-schedules and by different routes of administration: as single agent by systemic IV route, oral route and by intra-hepatic artery (IHA) infusion alone or in combination with cisplatin.

Showing 1041 - 1050 of 1197 results