{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2016)
Source:
ANDA207433
(2016)
Source URL:
First approved in 1964
Source:
NDA014399
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Desipramine is a tricyclic antidepressant that was approved by the FDA in 1964. It was derived from imipramine, which was the first tricyclic antidepressant to be manufactured. Desipramine is one of many tricyclic antidepressants, and this type of antidepressant gets its name due to its three-ring chemical structure. Desipramine, a secondary amine tricyclic antidepressant, is structurally related to both the skeletal muscle relaxant cyclobenzaprine and the thioxanthene antipsychotics such as thiothixene. It is the active metabolite of imipramine, a tertiary amine TCA. The acute effects of desipramine include inhibition of noradrenaline re-uptake at noradrenergic nerve endings and inhibition of serotonin (5-hydroxy tryptamine, 5HT) re-uptake at the serotoninergic nerve endings in the central nervous system. Desipramine exhibits greater noradrenergic re-uptake inhibition compared to the tertiary amine TCA imipramine. In addition to inhibiting neurotransmitter re-uptake, desipramine down-regulates beta-adrenergic receptors in the cerebral cortex and sensitizes serotonergic receptors with chronic use. The overall effect is increased serotonergic transmission. Antidepressant effects are typically observed 2 - 4 weeks following the onset of therapy though some patients may require up to 8 weeks of therapy prior to symptom improvement. Patients experiencing more severe depressive episodes may respond quicker than those with mild depressive symptoms. Desipramine is marketed under the trade name Norpramin, indicated for the treatment of depression.
Status:
US Approved Rx
(2023)
Source:
NDA217110
(2023)
Source URL:
First approved in 1964
Source:
ALKERAN by APOTEX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Status:
US Approved Rx
(2022)
Source:
ANDA214745
(2022)
Source URL:
First approved in 1963
Source:
NDA013263
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diazepam is a benzodiazepine first discovered at Hoffman-La Roche in the late 1950s. Diazepam was approved by FDA for the treatment of anxiety disorders as well as for such conditions as skeletal muscle spasm, alcohol withdrawal syndrom and convulsions (under the most known brand Valium). The drug acts by binding to GABA-A receptors and potentiating GABA evoked current. Chronic diazepam use is associated with tolerance, dependence, and withdrawal.
Status:
US Approved Rx
(1988)
Source:
ANDA071484
(1988)
Source URL:
First approved in 1963
Source:
ONCOVIN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Vincristine is a vinca alkaloid antineoplastic agent used as a treatment for various cancers including breast cancer, Hodgkin's disease, Kaposi's sarcoma, and testicular cancer. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vincristine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. Vincristine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis.Vincristine was marketed under the brand name Oncovin, but was discontinued. In 2012 the FDA approved a Liposomal formulation of Vincristine, named MARQIBO KIT.
Status:
US Approved Rx
(1983)
Source:
ANDA088004
(1983)
Source URL:
First approved in 1962
Source:
MELLARIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Thioridazine (Mellaril or Melleril) is a piperidine typical antipsychotic drug belonging to the phenothiazine drug group and was previously widely used in the treatment of schizophrenia and psychosis. Thioridazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; blocks alpha-adrenergic effect depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. Thioridazine primary use in medicine was the treatment of schizophrenia. Thioridazine was also tried with some success as a treatment for various psychiatric symptoms seen in people with dementia, but chronic use of thioridazine and other antipsychotics in people with dementia is not recommended. Thioridazine prolongs the QTc interval in a dose-dependent manner. It produces significantly less extrapyramidal side effects than most first-generation antipsychotics. Its use, along with the use of other typical antipsychotics, has been associated with degenerative retinopathies. It has a higher propensity for causing anticholinergic side effects coupled with a lower propensity for causing extrapyramidal side effects and sedation than chlorpromazine but also has a higher incidence of hypotension and cardiotoxicity. It is also known to possess a relatively high liability for causing orthostatic hypotension compared to other antipsychotics. Similarly to other first-generation antipsychotics, it has a relatively high liability for causing prolactin elevation. It is the moderate risk of causing weight gain.
Status:
US Approved Rx
(2017)
Source:
ANDA210124
(2017)
Source URL:
First approved in 1962
Source:
FLUOROURACIL by SPECTRUM PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Status:
US Approved Rx
(2017)
Source:
ANDA210124
(2017)
Source URL:
First approved in 1962
Source:
FLUOROURACIL by SPECTRUM PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Status:
US Approved Rx
(1985)
Source:
ANDA070076
(1985)
Source URL:
First approved in 1962
Source:
ALDOMET by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.
Status:
US Approved Rx
(1985)
Source:
ANDA070076
(1985)
Source URL:
First approved in 1962
Source:
ALDOMET by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.
Status:
US Approved Rx
(1985)
Source:
ANDA070076
(1985)
Source URL:
First approved in 1962
Source:
ALDOMET by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.