{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2004)
Source:
NDA021648
(2004)
Source URL:
First approved in 1954
Source:
NDA009330
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Digoxin, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Digoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium. The sodium calcium exchanger (NCX) in turn tries to extrude the sodium and in so doing, pumps in more calcium. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential.
Status:
US Approved Rx
(1986)
Source:
NDA019600
(1986)
Source URL:
First approved in 1954
Source:
8-MOP by VALEANT PHARM INTL
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.
Status:
US Approved Rx
(2008)
Source:
ANDA040866
(2008)
Source URL:
First approved in 1954
Source:
NDA009170
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Primidone is an anticonvulsant of the barbiturate class. It was introduced in 1954 under the brand name Mysoline by Wyeth in the United States. Mysoline, used alone or concomitantly with other anticonvulsants, is indicated in the control of grand mal, psychomotor, and focal epileptic seizures. It may control grand mal seizures refractory to other anticonvulsant therapy. Mysoline raises electro- or chemoshock seizure thresholds or alters seizure patterns in experimental animals. The mechanism(s) of primidone’s antiepileptic action is not known. Primidone per se has anticonvulsant activity, as do its two metabolites, phenobarbital and phenylethylmalonamide (PEMA). In addition to its anticonvulsant activity, PEMA potentiates the anticonvulsant activity of phenobarbital in experimental animals. Primidone itself doesn’t act on GABA-A receptors. It is active metabolite - phenobarbital primary acts via modulation of GABA -A receptors. The most frequently occurring early side effects are ataxia and vertigo. These tend to disappear with continued therapy, or with reduction of initial dosage. Occasionally, the following have been reported: nausea, anorexia, vomiting, fatigue, hyperirritability, emotional disturbances, sexual impotency, diplopia, nystagmus, drowsiness, and morbilliform skin eruptions.Granulocytopenia, agranulocytosis, and red-cell hypoplasia and aplasia, have been reported rarely. These and, occasionally, other persistant or severe side effects may necessitate withdrawal of the drug. Megaloblastic anemia may occur as a rare idiosyncrasy to Mysoline and to other anticonvulsants. The anemia responds to folic acid without necessity of discontinuing medication.
Status:
US Approved Rx
(2020)
Source:
ANDA210454
(2020)
Source URL:
First approved in 1953
Source:
METHOTREXATE SODIUM by STRIDES PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Methotrexate is an antineoplastic anti-metabolite. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. Methotrexate inhibits folic acid reductase which is responsible for the conversion of folic acid to tetrahydrofolic acid. At two stages in the biosynthesis of purines and at one stage in the synthesis of pyrimidines, one-carbon transfer reactions occur which require specific coenzymes synthesized in the cell from tetrahydrofolic acid. Tetrahydrofolic acid itself is synthesized in the cell from folic acid with the help of an enzyme, folic acid reductase. Methotrexate looks a lot like folic acid to the enzyme, so it binds to it quite strongly and inhibits the enzyme. Thus, DNA synthesis cannot proceed because the coenzymes needed for one-carbon transfer reactions are not produced from tetrahydrofolic acid because there is no tetrahydrofolic acid. Methotrexate selectively affects the most rapidly dividing cells (neoplastic and psoriatic cells). Methotrexate is indicated in the treatment of gestational choriocarcinoma, chorioadenoma destruens and hydatidiform mole. In acute lymphocytic leukemia, methotrexate is indicated in the prophylaxis of meningeal leukemia and is used in maintenance therapy in combination with other chemotherapeutic agents. Methotrexate is also indicated in the treatment of meningeal leukemia. Methotrexate is used alone or in combination with other anticancer agents in the treatment of breast cancer, epidermoid cancers of the head and neck, advanced mycosis fungoides (cutaneous T cell lymphoma), and lung cancer, particularly squamous cell and small cell types. Methotrexate is also used in combination with other chemotherapeutic agents in the treatment of advanced stage non-Hodgkin’s lymphomas. Methotrexate is indicated in the symptomatic control of severe, recalcitrant, disabling psoriasis. Methotrexate is indicated in the management of selected adults with severe, active rheumatoid arthritis (ACR criteria), or children with active polyarticular-course juvenile rheumatoid arthritis.
Status:
US Approved Rx
(2019)
Source:
ANDA212024
(2019)
Source URL:
First approved in 1953
Source:
LEVO-DROMORAN by VALEANT PHARM INTL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levorphanol, brand name Levo-Dromoran, is an opioid medication used to treat moderate to severe pain. Levorphanol is indicated for the management of moderate to severe pain where an opioid analgesic
is appropriate. It is a potent synthetic opioid mu-receptor agonist similar in action to morphine. Like other opioid
mu-receptor agonists, it is believed to act at receptors in both the brain and spinal cord to alter the transmission
and perception of pain. The onset and peak analgesic effects following administration of levorphanol are similar to
morphine when administered at equal analgesic doses. Levorphanol produces a degree of respiratory depression
similar to that produced by morphine at equal analgesic doses, and like many opioid mu-receptor agonists,
levorphanol produces euphoria or has a positive effect on mood in many individuals.
Status:
US Approved Rx
(2017)
Source:
ANDA204522
(2017)
Source URL:
First approved in 1953
Source:
NDA008708
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Phenoxybenzamin (marketed under the trade name Dibenzyline) is an alpha-adrenergic antagonist with long duration of action. It is indicated in the treatment of pheochromocytoma, to control episodes of hypertension and sweating. If tachycardia is excessive, it may be necessary to use a beta-blocking agent concomitantly. Phenoxybenzamine produces its therapeutic actions by blocking alpha receptors, leading to a muscle relaxation and a widening of the blood vessels. This widening of the blood vessels results in a lowering of blood pressure. Phenoxybenzamine hydrochloride can produce and maintain “chemical sympathectomy” by oral administration. It increases blood flow to the skin, mucosa and abdominal viscera, and lowers both supine and erect blood pressures. It has no effect on the parasympathetic system. Twenty to percent of orally administered phenoxybenzamine appears to be absorbed in the active form. The half-life of orally administered phenoxybenzamine hydrochloride is not known; however, the half-life of intravenously administered drug is approximately 24 hours. Demonstrable effects with intravenous administration persist for at least 3 to 4 days, and the effects of daily administration are cumulative for nearly a week. The following adverse reactions have been observed, but there are insufficient data to support an estimate of their frequency: Postural hypotension, tachycardia, inhibition of ejaculation, nasal congestion, and miosis. These so-called “side effects” are actually evidence of adrenergic blockade and vary according to the degree of blockade. Miscellaneous: Gastrointestinal irritation, drowsiness, fatigue.
Status:
US Approved Rx
(1971)
Source:
ANDA080027
(1971)
Source URL:
First approved in 1953
Source:
OPHTHAINE by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Proparacaine is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5%. Proparacaine hydrochloride ophthalmic solution is indicated for procedures in which a topical ophthalmic anesthetic is indicated: corneal anesthesia of short duration, e.g. tonometry, gonioscopy, removal of corneal foreign bodies, and for short corneal and conjunctival procedures. Proparacaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. More specifically, proparacaine appears to bind or antagonize the function of voltage gated sodium channels. The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential.
Status:
US Approved Rx
(2020)
Source:
NDA211281
(2020)
Source URL:
First approved in 1953
Source:
ANDA040621
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lactitol is a sugar alcohol. This ingredient has been determined to be GRAS for specified uses as a direct food additive and foods containing lactitol are eligible for a health claim related to dental caries. Lactitol is used as an oral powder or solution in the management of hepatic encephalopathy and in case of short-term treatment of occasional constipation. Intestinal flora of large intestine is metabolize lactitol to low-molecular organic acid, which leads to an increase in osmotic pressure in intestine, increase in volume of fecal masses bowel function normalization. This drug might cause abdominal discomfort, especially flatulence and abdominal pain rarely or sometimes abdominal distension. These effects tend to diminish or disappear after a few days of regular intake of the drug. Since 'antacids and neomycin can neutralize ' acidifying effect of lactitol on stool, they should not be co-administered with lactitol in cirrhotic patients with hepatic encephalopathy; however both substances do not alter the 'laxative effect in patients with constipation.
Status:
US Approved Rx
(1974)
Source:
ANDA084108
(1974)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Cyclopentolate (cyclopentolate hydrochloride) is a parasympatholytic anticholinergic used solely to obtain mydriasis or cycloplegia. This anticholinergic preparation blocks the responses of the sphincter muscle of the iris and the accommodative muscle of the ciliary body to cholinergic stimulation, producing pupillary dilation (mydriasis) and paralysis of accommodation (cycloplegia). It acts rapidly, but has a shorter duration than atropine. Maximal cycloplegia occurs within 25 to 75 minutes after instillation. Complete recovery of accommodation usually takes 6 to 24 hours. Complete recovery from mydriasis in some individuals may require several days. Heavily pigmented irides may require more doses than lightly pigmented irides.
Status:
US Approved Rx
(2017)
Source:
ANDA205005
(2017)
Source URL:
First approved in 1953
Source:
NDA009175
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Furadantin (nitrofurantoin), a synthetic chemical, is a stable, yellow, crystalline compound. Furadantin is an antibacterial agent for specific urinary tract infections. Orally administered Furadantin is readily absorbed and rapidly excreted in urine. Blood concentrations at therapeutic dosage are usually low. Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Furadantin, presumably by allowing better dissolution in gastric juices. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. Nitrofurantoin is activated by bacterial flavoproteins (nitrofuran reductase) to active reduced reactive intermediates that are thought to modulate and damage ribosomal proteins or other macromolecules, especially DNA, causing inhibition of DNA, RNA, protein, and cell wall synthesis. The overall effect is inhibition of bacterial growth or cell death.