U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 69 results

Status:
First approved in 1994

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Vinorelbine (trade name Navelbine) is a semi-synthetic vinca-alkaloid with a broad spectrum of anti-tumour activity. Vinorelbine is a mitotic spindle poison that impairs chromosomal segregation during mitosis. It blocks cells at G2/M. Microtubules (derived from polymers of tubulin) are the principal target of vinorelbine. Vinorelbine was developed by Pierre Fabre under licence from the CNRS in France. NAVELBINE (vinorelbine tartrate) as a single agent or in combination is indicated for the first line treatment of non small cell lung cancer and advanced breast cancer.
Vinblastine is a Vinca alkaloid obtained from the Madagascar periwinkle plant. Vinca alkaloids were found out in the 1950's by Canadian scientists, Robert Noble and Charles Beer for the first time. Medicinal applications of this plant lead to the monitoring of these compounds for their hypoglycemic activity, which is of little importance compared to their cytotoxic effects. They have been used to treat diabetes, high blood pressure and the drugs have even been used as disinfectants. Nevertheless, the vinca alkaloids are so important for being cancer fighters. The mechanism of action of vinblastine sulfate has been related to the inhibition of microtubule formation in the mitotic spindle, resulting in an arrest of dividing cells at the metaphase stage. Vinblastine is an antineoplastic agent used to treat Hodgkin's disease, non-Hodgkin's lymphomas, mycosis fungoides, cancer of the testis, Kaposi's sarcoma, Letterer-Siwe disease, as well as other cancers.
Status:
First marketed in 1921
Source:
Colchicine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Colchicine is an alkaloid obtained from the plant colchicum autumnale (also known as "meadow saffron"). Colchicine is an alternative medication for those unable to tolerate NSAIDs in gout. Mechanism of action of colchicine is inhibition of microtubule polymerization by binding to tubulin. Availability of tubulin is essential to mitosis, so colchicine effectively unctions as a "mitotic poison" or spindle poison.
Status:
First marketed in 1921
Source:
Colchicine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Colchicine is an alkaloid obtained from the plant colchicum autumnale (also known as "meadow saffron"). Colchicine is an alternative medication for those unable to tolerate NSAIDs in gout. Mechanism of action of colchicine is inhibition of microtubule polymerization by binding to tubulin. Availability of tubulin is essential to mitosis, so colchicine effectively unctions as a "mitotic poison" or spindle poison.
Status:
Investigational
Source:
INN:cevipabulin [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Cevipabulin is a synthetic, water-soluble tubulin-binding agent with potential antineoplastic activity. Cevipabulin appears to bind at the vinca-binding site on tubulin but seems to act more similar to taxane-site binding agents in that it enhances tubulin polymerization and does not induce tubulin depolymerization. The disruption in microtubule dynamics may eventually inhibit cell division and reduce cellular growth.
Status:
Investigational
Source:
INN:cevipabulin [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Cevipabulin is a synthetic, water-soluble tubulin-binding agent with potential antineoplastic activity. Cevipabulin appears to bind at the vinca-binding site on tubulin but seems to act more similar to taxane-site binding agents in that it enhances tubulin polymerization and does not induce tubulin depolymerization. The disruption in microtubule dynamics may eventually inhibit cell division and reduce cellular growth.
Status:
Investigational
Source:
INN:vinrosidine
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Conditions:

Vinrosidine (leurosidine) is a leurosine-like alkaloid originally isolated from Vinca rosea Linn. Vinrosidine exerts antitumor activity in animal models.
Status:
Investigational
Source:
USAN:FOSBRETABULIN TROMETHAMINE [USAN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Combretastatin A4 is a vascular disrupting agent (VDA) that targets tumor vasculature to inhibit angiogenesis. Combretastatin A4 is a tubulin-binding agent that binds at or near the colchicine binding site of β-tubulin and inhibits tubulin assembly. This tubulin-binding agent was originally isolated from an African shrub, Combretum caffrum. Combretastatin A4 is cytotoxic to umbilical-vein endothelial cells (HUVECs) and to a range of cells derived from primary tumors and these cytotoxicity profiles have been used to assess several novel analogs of the drug for future development. Combretastatin A4 has antitumor activity by inhibiting AKT function. The inhibited AKT activation causes decreased cell proliferation, cell cycle arrest, and reduced in vitro migration/invasiveness and in vivo metastatic ability. Several studies in mice have shown that a single administration of combretastatin A4 (100 mg/kg) does not significantly affect primary tumor growth. However, repeated administration (12.5 – 25.0mg/kg twice daily) for periods of 10 – 20 days resulted in approximately 50% retardation of growth of ectopic Lewis lung carcinoma and substantial growth delay of T138 spontaneous murine breast tumors. In clinical studies, Combretastatin A4 has been well tolerated in patients at doses up to 56 mg/m2, following a protocol of five daily 10-minute intravenous infusions every 21 days. The disodium combretastatin A4 phosphate prodrug is currently undergoing clinical trials in the UK and USA.
Status:
Investigational
Source:
INN:cevipabulin [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Cevipabulin is a synthetic, water-soluble tubulin-binding agent with potential antineoplastic activity. Cevipabulin appears to bind at the vinca-binding site on tubulin but seems to act more similar to taxane-site binding agents in that it enhances tubulin polymerization and does not induce tubulin depolymerization. The disruption in microtubule dynamics may eventually inhibit cell division and reduce cellular growth.
Status:
Investigational
Source:
JAN:OMBRABULIN HYDROCHLORIDE [JAN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Ombrabulin is an experimental drug candidate discovered by Ajinomoto and further developed by Sanofi-Aventis for cancer treatment. Ombrabulin is a synthetic water-soluble analog of combretastatin A4, derived from the South African willow bush (Combretum caffrum), with potential vascular-disrupting and antineoplastic activities. Ombrabulin binds to the colchicine binding site of endothelial cell tubulin, inhibiting tubulin polymerization and inducing mitotic arrest and apoptosis in endothelial cells. As apoptotic endothelial cells detach from their substrate, tumor blood vessels collapse; the acute disruption of tumor blood flow may result in tumor necrosis. Ombrabulin has been used in trials studying the treatment of Sarcoma, Neoplasms, Solid Tumor, Neoplasms, Malignant, and Advanced Solid Tumors, among others. In January 2013, Sanofi said it discontinued development of Ombrabulin after disappointing results from phase III clinical trials.