{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Source:
Folbic by NCS HealthCare of KY, Inc dba Vangard Labs
(2010)
Source URL:
First approved in 1991
Source:
ANDA065153
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Carminic acid is a natural compound extracted from cochineal insects, such as the cochineal, Armenian cochineal, and Polish cochineal. . The chromophore in this molecule is the conjugated pi system extending across the central anthraquinone ring system. Carminic acid can combine with various metals to form the pigment carmine.2 In industry, it is commonly complexed with aluminum to produce a purple/pink precipitate (with calcium as a counterion). Carmine’s color differs depending on the metal it is complexed to. For centuries, carminic acid and carmine have been used as dyes. The source material is cochineal, a blood-like fluid found within the cochineal insect. Currently, carminic acid and carmine have a multitude of applications in the modern world. They are used as nontoxic food additives and biological stains and are finding new uses as electrochemical modifiers and photosensitizers.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
Tetramethrin is a synthetic pyrethroid based on the natural counterpart found in chrysanthemum flowers but more stable and longer lasting. Amongst one of the most widely used insecticides, Tetramethrin is a fast acting neurotoxin used against most flying and crawling insects. It is often used in combination with other active ingredients to create a multi-action pesticide. Tetramethrin was found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein(MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2.
Status:
Possibly Marketed Outside US
Source:
Unknown by Ledderhose, G.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Glucosamine is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of the polysaccharides chitosan and chitin, which compose the exoskeletons of crustaceans and other arthropods, as well as the cell walls of fungi and many higher organisms. Glucosamine is one of the most abundant monosaccharides. It is produced commercially by the hydrolysis of crustacean exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat. Evidence for the effectiveness of glucosamine supplements is mixed. In the United States, it is one of the most common non-vitamin, non-mineral, dietary supplements used by adults. Glucosamine is marketed to support the structure and function of joints, and the marketing is targeted to people suffering from osteoarthritis. Commonly sold forms of glucosamine are glucosamine sulfate, glucosamine hydrochloride, and N-acetylglucosamine. Of the three commonly available forms of glucosamine, only glucosamine sulfate is given a "likely effective" rating for treating osteoarthritis. Glucosamine is often sold in combination with other supplements such as chondroitin sulfate and methylsulfonylmethane. Glucosamine, along with commonly used chondroitin, is not routinely prescribed to treat people who have symptomatic osteoarthritis of the knee, as there is insufficient evidence that this treatment is helpful. As is common with heavily promoted dietary supplements, the claimed benefits of glucosamine are based principally on clinical and laboratory studies. Clinical studies are divided, with some reporting relief from arthritic pain and stiffness, while higher quality studies report no benefit above placebo. There is no evidence to date that consumption of glucosamine by sport participants will prevent or limit joint damage after injury. In a randomized placebo-controlled trial, glucosamine supplementation had no additional effect on any rehabilitation outcome when given to athletes after anterior cruciate ligament (ACL) reconstruction. Glucosamine is naturally present in the shells of shellfish, animal bones, bone marrow, and fungi. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. Specifically in humans, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine by glutamine—fructose-6-phosphate transaminase as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is then used for making glycosaminoglycans, proteoglycans, and glycolipids. As the formation of glucosamine-6-phosphate is the first step for the synthesis of these products, glucosamine may be important in regulating their production; however, the way that the hexosamine biosynthesis pathway is actually regulated, and whether this could be involved in contributing to human disease remains unclear.
Status:
Possibly Marketed Outside US
Source:
NCT02580474: Phase 4 Interventional Completed Hepatitis C
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Asunaprevir is a direct acting antiviral agent (DAA) against the hepatitis C virus Asunaprevir is an inhibitor of the HCV NS3/4A serine protease complex. This NS3/4A enzyme complex is responsible for processing the HCV polyprotein to yield mature viral proteins required for viral replication. The combination of daclatasvir + asunaprevir [Daklinza(®) + Sunvepra(®)], two direct-acting antiviral agents, has been developed by Bristol-Myers Squibb for the treatment of patients with chronic hepatitis C virus (HCV) genotype 1 infections, including those with compensated cirrhosis.
Status:
Possibly Marketed Outside US
Source:
Bromosulfoftaleina Sodium by Rosenthal, S.M.|White, E.C.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sulfobromophthalein (BSP) is a dye with a high affinity for organic anion transporting polypeptides (OATPs) and has been used as a substrate for multidrug resistance associated protein 2 (Mrp2). BSP is transported into hepatocytes by OATPs and, after conjugation to glutathione, is excreted into bile by Mrp2.3 It was found to inhibit the aldo-keto reductase ARK1C20. Sulfobromophthalein (BSP) is used in diagnosis of hepatic disorders.It is also used for the quantitative determination of proteins.
Status:
Discontinued
Source:
Para Special Shampoo for Lice & Nits by Medican Technologies Inc. [Canada]
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.