U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 101 - 110 of 177 results

Aripiprazole is the first next-generation atypical antipsychotic. The unique actions of aripiprazole in humans are likely a combination of "functionally selective" activation of D(2) (and possibly D(3))-dopamine receptors and serotonin 5-HT(1A) receptors, coupled with inhibition of 5-HT(2A) receptors. Aripiprazole was approved by FDA (Abilify trade name) for the treatment of schizophrenia; manic and mixed episodes associated with bipolar I disorder; major depressive disorder; irritability associated with autistic disorder; Tourette’s disorder and agitation associated with schizophrenia or bipolar mania.
Frovatriptan succinate (trade name Frova) is a selective 5-hydroxytryptamine1 (5-HT1B/1D) receptor subtype agonist, and is used for the treatment of migraine attacks with or without aura in adults. Frovatriptan has no significant effects on GABAA mediated channel activity and has no significant affinity for benzodiazepine binding sites. Frovatriptan is believed to act on extracerebral, intracranial arteries and to inhibit excessive dilation of these vessels in migraine. Serious but rare cardiac events have been reported in patients with risk factors predictive of coronary artery disease (CAD). These include coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia and ventricular fibrillation.
Ziprasidone is atypical antipsychotic, approved by the U.S. Food and Drug Administration for the treatment of schizophrenia, and acute mania and mixed states associated with bipolar disorder. Intramuscilar injections of Ziprasidone are indicated for rapid control of the agitation in schizophrenic patients. Ziprasidone is used off-label for treatment of major depressive disorder, anxiety, obsessive compulsive disorder, borderline personality disorder. Ziprasidone functions as an antagonist at the D2, 5HT2A, and 5HT1D receptors, and as an agonist at the 5HT1A receptor.
Ziprasidone is atypical antipsychotic, approved by the U.S. Food and Drug Administration for the treatment of schizophrenia, and acute mania and mixed states associated with bipolar disorder. Intramuscilar injections of Ziprasidone are indicated for rapid control of the agitation in schizophrenic patients. Ziprasidone is used off-label for treatment of major depressive disorder, anxiety, obsessive compulsive disorder, borderline personality disorder. Ziprasidone functions as an antagonist at the D2, 5HT2A, and 5HT1D receptors, and as an agonist at the 5HT1A receptor.
Ziprasidone is atypical antipsychotic, approved by the U.S. Food and Drug Administration for the treatment of schizophrenia, and acute mania and mixed states associated with bipolar disorder. Intramuscilar injections of Ziprasidone are indicated for rapid control of the agitation in schizophrenic patients. Ziprasidone is used off-label for treatment of major depressive disorder, anxiety, obsessive compulsive disorder, borderline personality disorder. Ziprasidone functions as an antagonist at the D2, 5HT2A, and 5HT1D receptors, and as an agonist at the 5HT1A receptor.
Frovatriptan succinate (trade name Frova) is a selective 5-hydroxytryptamine1 (5-HT1B/1D) receptor subtype agonist, and is used for the treatment of migraine attacks with or without aura in adults. Frovatriptan has no significant effects on GABAA mediated channel activity and has no significant affinity for benzodiazepine binding sites. Frovatriptan is believed to act on extracerebral, intracranial arteries and to inhibit excessive dilation of these vessels in migraine. Serious but rare cardiac events have been reported in patients with risk factors predictive of coronary artery disease (CAD). These include coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia and ventricular fibrillation.
Ziprasidone is atypical antipsychotic, approved by the U.S. Food and Drug Administration for the treatment of schizophrenia, and acute mania and mixed states associated with bipolar disorder. Intramuscilar injections of Ziprasidone are indicated for rapid control of the agitation in schizophrenic patients. Ziprasidone is used off-label for treatment of major depressive disorder, anxiety, obsessive compulsive disorder, borderline personality disorder. Ziprasidone functions as an antagonist at the D2, 5HT2A, and 5HT1D receptors, and as an agonist at the 5HT1A receptor.
Ziprasidone is atypical antipsychotic, approved by the U.S. Food and Drug Administration for the treatment of schizophrenia, and acute mania and mixed states associated with bipolar disorder. Intramuscilar injections of Ziprasidone are indicated for rapid control of the agitation in schizophrenic patients. Ziprasidone is used off-label for treatment of major depressive disorder, anxiety, obsessive compulsive disorder, borderline personality disorder. Ziprasidone functions as an antagonist at the D2, 5HT2A, and 5HT1D receptors, and as an agonist at the 5HT1A receptor.
Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan acts as an agonist at serotonin 5-HT1B and 5-HT1D receptors. Rizatriptan binds with high affinity to human cloned 5-HT1B/1D receptors. Rizatriptan benzoate presumably exerts its therapeutic effects in the treatment of a migraine headache by binding to 5-HT1B/1D receptors located on intracranial blood vessels and sensory nerves of the trigeminal system. Rizatriptan is completely absorbed following oral administration. The mean oral absolute bioavailability of the rizatriptan benzoate tablet is about 45%, and mean peak plasma concentrations are reached in approximately 1-1.5 hours. The presence of a migraine headache did not appear to affect the absorption or pharmacokinetics of rizatriptan. Food has no significant effect on the bioavailability of rizatriptan but delays the time to reach peak concentration by an hour. The primary route of rizatriptan metabolism is via oxidative deamination by monoamine oxidase-A (MAO-A) to the indole acetic acid metabolite, which is not active at the 5-HT1B/1D receptor. N-mono-desmethyl-rizatriptan, a metabolite with activity similar to that of parent compound at the 5-HT1B/1D receptor, is formed to a minor degree. Plasma concentrations of N-mono-desmethyl-rizatriptan are approximately 14% of those of parent compound, and it is eliminated at a similar rate. Other minor metabolites, the N-oxide, the 6-hydroxy compound, and the sulfate conjugate of the 6-hydroxy metabolite are not active at the 5-HT1B/1D receptor.
Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan (trade name Maxalt) is a 5-HT1 receptor agonist of the triptan class of drugs developed by Merck & Co. for the treatment of migraine headaches. Rizatriptan acts as an agonist at serotonin 5-HT1B and 5-HT1D receptors. Rizatriptan binds with high affinity to human cloned 5-HT1B/1D receptors. Rizatriptan benzoate presumably exerts its therapeutic effects in the treatment of a migraine headache by binding to 5-HT1B/1D receptors located on intracranial blood vessels and sensory nerves of the trigeminal system. Rizatriptan is completely absorbed following oral administration. The mean oral absolute bioavailability of the rizatriptan benzoate tablet is about 45%, and mean peak plasma concentrations are reached in approximately 1-1.5 hours. The presence of a migraine headache did not appear to affect the absorption or pharmacokinetics of rizatriptan. Food has no significant effect on the bioavailability of rizatriptan but delays the time to reach peak concentration by an hour. The primary route of rizatriptan metabolism is via oxidative deamination by monoamine oxidase-A (MAO-A) to the indole acetic acid metabolite, which is not active at the 5-HT1B/1D receptor. N-mono-desmethyl-rizatriptan, a metabolite with activity similar to that of parent compound at the 5-HT1B/1D receptor, is formed to a minor degree. Plasma concentrations of N-mono-desmethyl-rizatriptan are approximately 14% of those of parent compound, and it is eliminated at a similar rate. Other minor metabolites, the N-oxide, the 6-hydroxy compound, and the sulfate conjugate of the 6-hydroxy metabolite are not active at the 5-HT1B/1D receptor.

Showing 101 - 110 of 177 results