{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2018)
Source:
NDA211288
(2018)
Source URL:
First approved in 2018
Source:
NDA211288
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dacomitinib is an oral, once-daily, pan-HER inhibitor. It is an irreversible inhibitor of HER-1 (EGFR), HER-2 and HER-4 tyrosine kinases. Dacomtinib is being evaluated in phase 3 clinical trials against nonsmall-cell lung cancer. Direct comparison with erlotinib did not show superiority of dacomtinib, but subgroup analysis have demonstrated that subgroup with exon 19 deletion had favorable outcomes with dacomitinib. In addition to nonsmall-cell lung cancer dacomtinib is being evaluated against esophagus, head and neck and other neoplasms. Due to its ability to pass through blood-brain barrier, dacomitinib can be used to treat brain tumors.
Status:
Investigational
Source:
NCT00050830: Phase 2 Interventional Completed Lung Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Canertinib or CI-1033 (N-[4-[N-(3-Chloro-4-fluorophenyl)amino]-7-[3-(4-morpholinyl)propoxy]quinazolin-6-yl]acrylamide) is a pan-erbB tyrosine kinase inhibitor. It selectively inhibits erbB1 (epidermal growth factor receptor), erbB2, erbB3, and erbB4 without inhibiting tyrosine kinase activity of receptors such as platelet-derived growth factor receptor, fibroblast growth factor receptor, and insulin receptor, even at high concentrations. Canertinib was under development by Pfizer Inc as a potential treatment for cancer.
Status:
Investigational
Source:
NCT04671303: Phase 2 Interventional Completed Lung Cancer
(2021)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
AST-1306, also known as Allitinib, is an orally active potent, selective, irreversible inhibitor of the HER family of receptor tyrosine kinases. AST-1306 inhibits the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu) transgenic breast cancer mouse models. Allitinib is in Phase I clinical trial for the treatment of advanced solid tumors. Serious adverse effects detected were: diarrhea, dehydration and hyperbilirubinemia.
Status:
Investigational
Source:
NCT01167244: Phase 2 Interventional Completed Non-Small-Cell Lung Carcinoma
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
BMS-690514 is a potent, reversible oral inhibitor of epidermal growth factor receptor (EGFR/HER-1), HER-2 and -4, and vascular endothelial growth factor receptors (VEGFRs)-1 to -3 offering targeted inhibition of tumour growth and vascularisation in a single agent. Bristol-Myers Squibb was developing BMS 690514, as an oral treatment for cancer. BMS-690514 had being in phase II for the treatment of breast cancer; non-small cell lung cancer, but later these studies were discontinued.
Status:
Investigational
Source:
NCT03130790: Phase 2/Phase 3 Interventional Completed Gastric Cancer
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Varlitinib (Alternative Names: ARRY-334543; ARRY-543; ASLAN-001; Varlitinib tosylate) is a small molecule based reversible pan-HER inhibitor of EGFR, HER2 and HER4. In response to the binding of various ligands, these kinases undergo heterodimerisation and homodimerization, resulting in activation of numerous growth factor signaling pathways, by inhibiting the activation of the HER receptors via drug, effects such as shrinkage of the tumor and longer survival can be anticipated. In a large variety of cancers, the overexpression and/or constitutive activation of EGFR and HER2 are often observed and frequently correlate with poor clinical prognosis. Licensed from Array BioPharma with global rights for all indications, varlitinib is being developed as first-in-class drug for cholangiocarcinoma, gastric and colorectal cancer, and as best-in-class drug for breast cancer.
Status:
Investigational
Source:
NCT00979173: Phase 1 Interventional Completed Glioma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
BMS 599626 is a selective and efficacious inhibitor of HER1 and HER2 with IC50 of 20 nM and 30 nM. BMS-599626 is identified as an ATP-competitive inhibitor for HER1 and as an ATP-noncompetitive inhibitor for HER2. BMS-599626 inhibits the proliferation of tumor cells expressing high levels of HER1 and/or HER2, including Sal2, BT474, N87, KPL-4, HCC202, HCC1954, HCC1419, AU565, ZR-75-30, MDA-MB-175, GEO, and PC9 cells. In a phase I trial of solid tumour patients receiving BMS 599626 no doselimiting toxicities were observed during the first cycle. Grade 1 or 2 drugrelated effects were reported and included diarrhoea, nausea, vomiting, rash, fatigue, musculoskeletal pain/cramp and cough. BristolMyers Squibb discontinued development of BMS 599626 for cancer in July 2015
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
PD-153035 is a potent and selective ATP-competitive inhibitor of the epidermal growth factor receptor tyrosine kinase EGFR. PD 153035 shows a potent and selective inhibitory effect on tyrosine phosphorylation induced by EGF in Swiss 3T3 fibroblast and A-431 human epidermoid carcinoma cells. PD153035 shows dose-dependent growth inhibitory effects in cultures of EGF receptor-overexpressing human cancer cell lines (A431, Difi, DU145, MDA-MB-468, and ME180) and in nasopharyngeal carcinoma (NPC) cell lines (NPC-TW01, NPC-TW04, and HONE1). Pretreatment of EGFR inhibitors by 24 hours significantly enhances the cytotoxic effect of doxorubicin, paclitaxel, cisplatin, and 5-fluorouracil in NPCTW04 cells. PD153035 abolishes COX-2 expression induced by the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI) in Caco-2 colon cancer cells. In A431 human epidermoid tumors grown as xenografts in immunodeficient nude mice, PD153035 at 80 mg/kg i.p. inhibit EGF receptor tyrosine kinase activity. PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice.
Status:
US Approved Rx
(2018)
Source:
NDA211288
(2018)
Source URL:
First approved in 2018
Source:
NDA211288
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dacomitinib is an oral, once-daily, pan-HER inhibitor. It is an irreversible inhibitor of HER-1 (EGFR), HER-2 and HER-4 tyrosine kinases. Dacomtinib is being evaluated in phase 3 clinical trials against nonsmall-cell lung cancer. Direct comparison with erlotinib did not show superiority of dacomtinib, but subgroup analysis have demonstrated that subgroup with exon 19 deletion had favorable outcomes with dacomitinib. In addition to nonsmall-cell lung cancer dacomtinib is being evaluated against esophagus, head and neck and other neoplasms. Due to its ability to pass through blood-brain barrier, dacomitinib can be used to treat brain tumors.
Status:
Investigational
Source:
NCT00050830: Phase 2 Interventional Completed Lung Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Canertinib or CI-1033 (N-[4-[N-(3-Chloro-4-fluorophenyl)amino]-7-[3-(4-morpholinyl)propoxy]quinazolin-6-yl]acrylamide) is a pan-erbB tyrosine kinase inhibitor. It selectively inhibits erbB1 (epidermal growth factor receptor), erbB2, erbB3, and erbB4 without inhibiting tyrosine kinase activity of receptors such as platelet-derived growth factor receptor, fibroblast growth factor receptor, and insulin receptor, even at high concentrations. Canertinib was under development by Pfizer Inc as a potential treatment for cancer.