U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 161 - 170 of 282 results


Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Conditions:

BARACLUDE® is the tradename for entecavir, a guanosine nucleoside analogue with selective activity against hepatitis B virus (HBV). It inhibits all three steps in the viral replication process. By competing with the natural substrate deoxyguanosine triphosphate, entecavir functionally inhibits all three activities of the HBV polymerase (reverse transcriptase, rt): (1) base priming, (2) reverse transcription of the negative strand from the pregenomic messenger RNA, and (3) synthesis of the positive strand of HBV DNA. Upon activation by kinases, the drug can be incorporated into the DNA which has the ultimate effect of inhibiting the HBV polymerase activity. Entecavir is used for the treatment of chronic hepatitis B virus infection in adults with evidence of active viral replication and either evidence of persistent elevations in serum aminotransferases (ALT or AST) or histologically active disease.
Clofarabine is a anti-cancer drug which was approved by FDA for the treatment of pediatric patients with relapsed or refractory acute lymphoblastic leukemia. After crossing the cell membrane the drug is rapidly metabolized by deoxycytidine kinase to diphosphate and triphosphate metabolites and these metabolites reversibly inhibit hRNR by binding to alpha subunit. Also the triphosphate is incorporated to DNA where it acts as a chain terminator.
Status:
First approved in 2002

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Oxaliplatin (brand name Eloxatin), a new generation of platinum derivatives discovered by Prof Kidani in 1976 at Nagoya University in Japan, was licensed-in and developed by Debiopharm. Eloxatin is typically administered in combination with fluorouracil and leucovorin for the adjuvant treatment of stage III colon cancer and for the treatment of advanced carcinoma of the colon or rectum. Oxaliplatin undergoes nonenzymatic conversion in physiologic solutions to active derivatives via displacement of the labile oxalate ligand. Several transient reactive species are formed, including monoaquo and diaquo 1,2-diaminocyclohexane (DACH) platinum, which covalently bind with macromolecules. Both inter- and intrastrand Pt-DNA crosslinks are formed. Crosslinks are formed between the N7 positions of two adjacent guanines (GG), adjacent adenine-guanines (AG), and guanines separated by an intervening nucleotide (GNG). These crosslinks inhibit DNA replication and transcription. Cytotoxicity is cell-cycle nonspecific.
Status:
First approved in 1999

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


NEO 212 is novel DNA alkylating agent exhibiting superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo. NEO212 is a conjugate of temozolomide (TMZ,) with the natural product perillyl alcohol (POH). NEO 212 causes DNA damage and cell death much more efficiently than TMZ because linkage with POH increased it's biological half-life and thus provided greater opportunity for placement of cytotoxic DNA lesions.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Epirubicin is an anthracycline cytotoxic agent, is a 4'-epi-isomer of doxorubicin. The compound is marketed by Pfizer under the trade name Ellence in the US. It is indicated as a component of adjuvant therapy in patients with evidence of axillary node tumor involvement following resection of primary breast cancer. Although it is known that anthracyclines can interfere with a number of biochemical and biological functions within eukaryotic cells, the precise mechanisms of epirubicin’s cytotoxic and/or antiproliferative properties have not been completely elucidated. It is known, that epirubicin forms a complex with DNA by intercalation of its planar rings between nucleotide base pairs, with consequent inhibition of nucleic acid (DNA and RNA) and protein synthesis. Such intercalation triggers DNA cleavage by topoisomerase II, resulting in cytocidal activity. Epirubicin also inhibits DNA helicase activity, preventing the enzymatic separation of double-stranded DNA and interfering with replication and transcription. Epirubicin is also involved in oxidation/reduction reactions by generating cytotoxic free radicals.
Topotecan, a semi-synthetic derivative of camptothecin (a plant alkaloid obtained from the Camptotheca acuminata tree), is an anti-tumor drug with topoisomerase I-inhibitory activity similar to irinotecan. DNA topoisomerases are enzymes in the cell nucleus that regulate DNA topology (3-dimensional conformation) and facilitate nuclear processes such as DNA replication, recombination, and repair. During these processes, DNA topoisomerase I creates reversible single-stranded breaks in double-stranded DNA, allowing intact single DNA strands to pass through the break and relieve the topologic constraints inherent in supercoiled DNA. The 3'-DNA terminus of the broken DNA strand binds covalently with the topoisomerase enzyme to form a catalytic intermediate called a cleavable complex. After DNA is sufficiently relaxed and the strand passage reaction is complete, DNA topoisomerase reattaches the broken DNA strands to form the unaltered topoisomers that allow transcription to proceed. Topotecan interferes with the growth of cancer cells, which are eventually destroyed. Since the growth of normal cells can be affected by the medicine, other effects may also occur. Unlike irinotecan, topotecan is found predominantly in the inactive carboxylate form at neutral pH and it is not a prodrug. Topotecan has the same mechanism of action as irinotecan and is believed to exert its cytotoxic effects during the S-phase of DNA synthesis. Topoisomerase I relieves torsional strain in DNA by inducing reversible single strand breaks. Topotecan binds to the topoisomerase I-DNA complex and prevents religation of these single strand breaks. This ternary complex interferes with the moving replication fork, which leads to the induction of replication arrest and lethal double-stranded breaks in DNA. As mammalian cells cannot efficiently repair these double strand breaks, the formation of this ternary complex eventually leads to apoptosis (programmed cell death). Topotecan mimics a DNA base pair and binds at the site of DNA cleavage by intercalating between the upstream (−1) and downstream (+1) base pairs. Intercalation displaces the downstream DNA, thus preventing religation of the cleaved strand. By specifically binding to the enzyme–substrate complex, Topotecan acts as an uncompetitive inhibitor. Topotecan is used for the treatment of advanced ovarian cancer in patients with disease that has recurred or progressed following therapy with platinum-based regimens. Also used as a second-line therapy for treatment-sensitive small cell lung cancer, as well as in combination with cisplatin for the treatment of stage IV-B, recurrent, or persistent cervical cancer not amenable to curative treatment with surgery and/or radiation therapy. Topotecan is sold under the trade name Hycamtin.
Topotecan, a semi-synthetic derivative of camptothecin (a plant alkaloid obtained from the Camptotheca acuminata tree), is an anti-tumor drug with topoisomerase I-inhibitory activity similar to irinotecan. DNA topoisomerases are enzymes in the cell nucleus that regulate DNA topology (3-dimensional conformation) and facilitate nuclear processes such as DNA replication, recombination, and repair. During these processes, DNA topoisomerase I creates reversible single-stranded breaks in double-stranded DNA, allowing intact single DNA strands to pass through the break and relieve the topologic constraints inherent in supercoiled DNA. The 3'-DNA terminus of the broken DNA strand binds covalently with the topoisomerase enzyme to form a catalytic intermediate called a cleavable complex. After DNA is sufficiently relaxed and the strand passage reaction is complete, DNA topoisomerase reattaches the broken DNA strands to form the unaltered topoisomers that allow transcription to proceed. Topotecan interferes with the growth of cancer cells, which are eventually destroyed. Since the growth of normal cells can be affected by the medicine, other effects may also occur. Unlike irinotecan, topotecan is found predominantly in the inactive carboxylate form at neutral pH and it is not a prodrug. Topotecan has the same mechanism of action as irinotecan and is believed to exert its cytotoxic effects during the S-phase of DNA synthesis. Topoisomerase I relieves torsional strain in DNA by inducing reversible single strand breaks. Topotecan binds to the topoisomerase I-DNA complex and prevents religation of these single strand breaks. This ternary complex interferes with the moving replication fork, which leads to the induction of replication arrest and lethal double-stranded breaks in DNA. As mammalian cells cannot efficiently repair these double strand breaks, the formation of this ternary complex eventually leads to apoptosis (programmed cell death). Topotecan mimics a DNA base pair and binds at the site of DNA cleavage by intercalating between the upstream (−1) and downstream (+1) base pairs. Intercalation displaces the downstream DNA, thus preventing religation of the cleaved strand. By specifically binding to the enzyme–substrate complex, Topotecan acts as an uncompetitive inhibitor. Topotecan is used for the treatment of advanced ovarian cancer in patients with disease that has recurred or progressed following therapy with platinum-based regimens. Also used as a second-line therapy for treatment-sensitive small cell lung cancer, as well as in combination with cisplatin for the treatment of stage IV-B, recurrent, or persistent cervical cancer not amenable to curative treatment with surgery and/or radiation therapy. Topotecan is sold under the trade name Hycamtin.
Gemcitabine is a nucleoside analog used as chemotherapy. It is marketed as Gemzar® by Eli Lilly and Company. Gemcitabine inhibits thymidylate synthetase, leading to inhibition of DNA synthesis and cell death. Gemcitabine is a prodrug so activity occurs as a result of intracellular conversion to two active metabolites, gemcitabine diphosphate and gemcitabine triphosphate by deoxycitidine kinase. Gemcitabine diphosphate also inhibits ribonucleotide reductase, the enzyme responsible for catalyzing synthesis of deoxynucleoside triphosphates required for DNA synthesis. Finally, Gemcitabine triphosphate (diflurorodeoxycytidine triphosphate) competes with endogenous deoxynucleoside triphosphates for incorporation into DNA. Gemcitabine is indicated for the treatment of advanced ovarian cancer that has relapsed at least 6 months after completion of platinum-based therapy; metastatic ovarian cancer; inoperable, locally advanced (Stage IIIA or IIIB), or metastatic (Stage IV) non-small cell lung cancer; and locally advanced (nonresectable Stage II or Stage III) or metastatic (Stage IV) adenocarcinoma of the pancreas.
Aminolevulinic Acid is the first compound in the porphyrin synthesis pathway. The metabolism of aminolevulinic acid (ALA) is the first step in the biochemical pathway resulting in heme synthesis. Aminolevulinic acid is not a photosensitizer, but rather a metabolic precursor of protoporphyrin IX (PpIX), which is a photosensitizer. The synthesis of ALA is normally tightly controlled by feedback inhibition of the enzyme, ALA synthetase, presumably by intracellular heme levels. ALA, when provided to the cell, bypasses this control point and results in the accumulation of PpIX, which is converted into heme by ferrochelatase through the addition of iron to the PpIX nucleus. Marketed under the brand name LEVULAN KERASTICK for Topical Solution plus blue light illumination using the BLU-U Blue Light Photodynamic Therapy Illuminator, it is indicated for the treatment of minimally to moderately thick actinic keratoses (Grade 1 or 2, see table 2 for definition) of the face or scalp. Aminolevulinic acid is also being studied in the treatment of other conditions and types of cancer. An orally-administered in vivo diagnostic agent, Aminolevulinic acid, is used in photodynamic diagnosis (PDD) whose aim is to help doctors visualize the tumor tissue during surgical resection of malignant glioma, it is already sold in over 20 European countries including Germany and the U.K. According to the presumed mechanism of action, photosensitization following application of aminolevulinic acid (ALA) topical solution occurs through the metabolic conversion of ALA to protoporphyrin IX (PpIX), which accumulates in the skin to which aminolevulinic acid has been applied. When exposed to light of appropriate wavelength and energy, the accumulated PpIX produces a photodynamic reaction, a cytotoxic process dependent upon the simultaneous presence of light and oxygen. The absorption of light results in an excited state of the porphyrin molecule, and subsequent spin transfer from PpIX to molecular oxygen generates singlet oxygen, which can further react to form superoxide and hydroxyl radicals. Photosensitization of actinic (solar) keratosis lesions using aminolevulinic acid, plus illumination with the BLU-UTM Blue Light Photodynamic Therapy Illuminator (BLU-U), is the basis for aminolevulinic acid photodynamic therapy (PDT).
Status:
First approved in 1990

Class (Stereo):
CHEMICAL (ABSOLUTE)



Idarubicin is an antineoplastic in the anthracycline class.Idarubicin hydrochloride is a DNA-intercalating analog of daunorubicin which has an inhibitory effect on nucleic acid synthesis and interacts with the enzyme topoisomerase II. The absence of a methoxy group at position 4 of the anthracycline structure gives the compound a high lipophilicity which results in an increased rate of cellular uptake compared with other anthracyclines.Idarubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Idarubicin in combination with other approved antileukemic drugs is indicated for the treatment of acute myeloid leukemia (AML) in adults.

Showing 161 - 170 of 282 results