U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Lacosamide is an anticonvulsant that is FDA approved for the treatment of partial-onset seizures. The precise mechanism by which lacosamide exerts its antiepileptic effects in humans remains to be fully elucidated. In vitro electrophysiological studies have shown that lacosamide selectively enhances slow inactivation of voltage-gated sodium channels, resulting in stabilization of hyperexcitable neuronal membranes and inhibition of repetitive neuronal firing Common adverse reactions include diplopia, headache, dizziness, nausea. Patients with renal or hepatic impairment who are taking strong inhibitors of CYP3A4 and CYP2C9 may have a significant increase in exposure to Lacosamide tablets.
Nateglinide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It belongs to the meglitinide class of short-acting insulin secretagogues, which act by binding to β cells of the pancreas to stimulate insulin release. Nateglinide is an amino acid derivative that induces an early insulin response to meals decreasing postprandial blood glucose levels. It should only be taken with meals and meal-time doses should be skipped with any skipped meal. Approximately one month of therapy is required before a decrease in fasting blood glucose is seen. Meglitnides may have a neutral effect on weight or cause a slight increase in weight. The average weight gain caused by meglitinides appears to be lower than that caused by sulfonylureas and insulin and appears to occur only in those naïve to oral antidiabetic agents. Due to their mechanism of action, meglitinides may cause hypoglycemia although the risk is thought to be lower than that of sulfonylureas since their action is dependent on the presence of glucose. In addition to reducing postprandial and fasting blood glucose, meglitnides have been shown to decrease glycosylated hemoglobin (HbA1c) levels, which are reflective of the last 8-10 weeks of glucose control. Meglitinides appear to be more effective at lowering postprandial blood glucose than metformin, sulfonylureas and thiazolidinediones. Nateglinide is extensively metabolized in the liver and excreted in urine (83%) and feces (10%). The major metabolites possess less activity than the parent compound. One minor metabolite, the isoprene, has the same potency as its parent compound.
Armodafinil is the R-enantiomer of modafinil, a wake-promoting agent, that primarily affects areas of the brain involved in controlling wakefulness. Armodafinil is an indirect dopamine receptor agonist; both armodafinil and modafinil bind in vitro to the dopamine transporter and inhibit dopamine reuptake. Armodafinil tablets are indicated to improve wakefulness in adult patients with excessive sleepiness associated with obstructive sleep apnea (OSA), narcolepsy, or shift work disorder (SWD). Once-daily armodafinil was generally well tolerated in adult patients with excessive sleepiness associated with OSA (despite treatment of the underlying condition), narcolepsy or SWSD.
Fluvoxamine is an antidepressant which functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. Fluvoxamine has been in use in clinical practice since 1983 and has a clinical trial database comprised of approximately 35,000 patients. It was launched in the US in December 1994 and in Japan in June 1999. As of the end of 1995, more than 10 million patients worldwide have been treated with fluvoxamine. The exact mechanism of action of fluvoxamine has not been fully determined, but appears to be linked to its inhibition of CNS neuronal uptake of serotonin. Fluvoxamine blocks the reuptake of serotonin at the serotonin reuptake pump of the neuronal membrane, enhancing the actions of serotonin on 5HT1A autoreceptors. In-vitro studies suggest that fluvoxamine is more potent than clomipramine, fluoxetine, and desipramine as a serotonin-reuptake inhibitor. Studies have also demonstrated that fluvoxamine has virtually no affinity for α1- or α2-adrenergic, β-adrenergic, muscarinic, dopamine D2, histamine H1, GABA-benzodiazepine, opiate, 5-HT1, or 5-HT2 receptors. Fluvoxamine is used for management of depression and for Obsessive Compulsive Disorder (OCD). Has also been used in the management of bulimia nervosa. Fluvoxamine is known under the brand names: Faverin, Fevarin, Floxyfral, Dumyrox and Luvox.
Quazepam is indicated for the treatment of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Quazepam interact preferentially with the benzodiazepine-1 (BZ1) receptors. Most common adverse reactions (>1%): drowsiness, headache, fatigue, dizziness, dry mouth, dyspepsia. Downward of CAN depressant dose adjustment may be necessary due to additive effects.
Phenelzine is an irreversible non-selective inhibitor of monoamine oxidase. Although the exact mechanism of action has not been determined, it appears that the irreversible, nonselective inhibition of MAO by phenelzine relieves depressive symptoms by causing an increase in the levels of serotonin, norepinephrine, and dopamine in the neuron. Phenelzine is used for the treatment of major depressive disorder. Has also been used with some success in the management of bulimia nervosa.
Cidoxepin is the cis-isomer of the widely prescribed tricyclic compound doxepin. Commercial preparations of the tricyclic anti-depressant doxepin contain 15% of the more active cis-doxepin and 85% of the trans-isomer. Elorac, Inc., a rapidly growing specialty pharmaceutical company focused on the treatment of dermatological disorders, is pleased to announce that it has acquired worldwide rights to the active agent Cidoxepin from Gideon Pharmaceuticals. Cidoxepin appears to be much more potent than doxepin while having less sedative and cholinergic side effects. Elorac plans to develop oral formulations of the drug to treat urticaria and topical formulations for treatment of atopic and contact dermatitis.
Avasimibe (CI 1011) is a potent ACAT (Acyl-CoA:cholesterol acyltransferase) inhibitor. Avasimibe inhibits both ACAT1 and ACAT2 isoforms. Avasimibe was in development by Parke-Davis (now Pfizer) in the US for the treatment of atherosclerosis and hyperlipidaemia. Avasimibe was in phase III studies and more than 1300 patients had been treated for up to one year, however, in October 2003, Pfizer announced that development had been discontinued.
Status:
Investigational
Source:
INN:ufiprazole
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Ufiprazole (Omeprazole sulfide) is a metabolite of Omeprazole, which is a proton pump inhibitor. Omeprazole sulfide has been shown to be a direct-acting inhibitor of CYP2C19 in pooled human liver microsomes. Ufiprazole is also a weak BRS-3 agonist.
Schisandrin A is a bioactive lignan occurring in the fruits of plants of the Schisandra genus that have traditionally been used in Korea for treating various inflammatory diseases. Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway. Schisandrin A represents a potential antiviral agent to block DENV replication in vitro and in vivo. Schisandrin A has been widely reported as being very effective for the treatment of liver disease. The hepatoprotective mechanisms of schisandrin A may include activation of autophagy flux and inhibition of apoptosis.