{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
NDA212489
(2020)
Source URL:
First approved in 2020
Source:
NDA212489
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Opicapone (Ongentys®), a potent, oral, third-generation, long-acting, peripheral catechol-O-methyltransferase (COMT) inhibitor, is approved as the adjunctive treatment to levodopa (L-Dopa)/dopa-decarboxylase inhibitor (DDCI) therapy in adults with Parkinson's disease (PD) and end-of-dose motor fluctuations who cannot be stabilized on those combinations. Opicapone is a hydrophilic 1,2,4-oxadiazole analog with a pyridine N-oxide at position 3, with these modifications enhancing its potency and extending its duration of action, whilst avoiding cell toxicity. In preclinical animal studies, Opicapone-induced inhibition of peripheral (but not central) COMT activity was associated with a prolonged increase in systemic and central exposure to L-Dopa, with a corresponding reduction in 3-OMD exposure. Following single or multiple doses of Opicapone (5–1200 mg) in healthy adult volunteers or patients with PD, Opicapone inhibited COMT activity in ex vivo erythrocyte assays in a reversible dose-dependent manner, with the duration of Opicapone-induced COMT inhibition independent of dose. Adjunctive Opicapone was generally well tolerated during more than a year of treatment in BIPARK I and BIPARK II (double-blind plus extension phases). The recommended dosage is 50 mg once daily, which should be taken at bedtime at least 1 h before or after L-Dopa combinations.
Status:
US Approved Rx
(2003)
Source:
NDA021485
(2003)
Source URL:
First approved in 1999
Source:
NDA020796
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Entacapone is a selective, reversible catechol-O-methyl transferase (COMT) inhibitor for the treatment of Parkinson's disease. It is a member of the class of nitrocatechols. When administered concomittantly with levodopa and a decarboxylase inhibitor (e.g., carbidopa), increased and more sustained plasma levodopa concentrations are reached as compared to the administration of levodopa and a decarboxylase inhibitor. The mechanism of action of entacapone is believed to be through its ability to inhibit COMT in peripheral tissues, altering the plasma pharmacokinetics of levodopa. When entacapone is given in conjunction with levodopa and an aromatic amino acid decarboxylase inhibitor, such as carbidopa, plasma levels of levodopa are greater and more sustained than after administration of levodopa and an aromatic amino acid decarboxylase inhibitor alone. It is believed that at a given frequency of levodopa administration, these more sustained plasma levels of levodopa result in more constant dopaminergic stimulation in the brain, leading to a greater reduction in the manifestations of parkinsonian syndrome. Entacapone is used as an adjunct to levodopa / carbidopa in the symptomatic treatment of patients with idiopathic Parkinson's Disease who experience the signs and symptoms of end-of-dose "wearing-off".
Status:
US Approved Rx
(2018)
Source:
ANDA208937
(2018)
Source URL:
First approved in 1998
Source:
NDA020697
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tolcapone is a potent, selective, and reversible inhibitor of catechol-O-methyltransferase (COMT). In humans, COMT is distributed throughout various organs. COMT catalyzes the transfer of the methyl group of S-adenosyl-L-methionine to the phenolic group of substrates that contain a catechol structure. Physiological substrates of COMT include dopa, catecholamines (dopamine, norepinephrine, epinephrine) and their hydroxylated metabolites. The function of COMT is the elimination of biologically active catechols and some other hydroxylated metabolites. COMT is responsible for the elimination of biologically active catechols and some other hydroxylated metabolites. In the presence of a decarboxylase inhibitor, COMT becomes the major metabolizing enzyme for levodopa catalyzing it to 3-methoxy-4-hydroxy-L-phenylalanine (3-OMD) in the brain and periphery. When tolcapone is given in conjunction with levodopa and an aromatic amino acid decarboxylase inhibitor, such as carbidopa, plasma levels of levodopa are more sustained than after administration of levodopa and an aromatic amino acid decarboxylase inhibitor alone. It is believed that these sustained plasma levels of levodopa result in more constant dopaminergic stimulation in the brain, leading to greater effects on the signs and symptoms of Parkinson's disease in patients as well as increased levodopa adverse effects, sometimes requiring a decrease in the dose of levodopa. The precise mechanism of action of tolcapone is unknown, but it is believed to be related to its ability to inhibit COMT and alter the plasma pharmacokinetics of levodopa, resulting in an increase in plasma levodopa concentrations. The inhibition of COMT also causes a reduction in circulating 3-OMD as a result of decreased peripheral metabolism of levodopa. This may lead to an increase distribution of levodopa into the CNS through the reduction of its competitive substrate, 3-OMD, for transport mechanisms. Sustained levodopa concentrations presumably result in more consistent dopaminergic stimulation, resulting in greater reduction in the manifestations of parkinsonian syndrome. Tolcapone is used as an adjunct to levodopa/carbidopa therapy for the symptomatic treatment of Parkinson's Disease. This drug is generally reserved for patients with parkinsonian syndrome receiving levodopa/carbidopa who are experiencing symptom fluctuations and are not responding adequately to or are not candidates for other adjunctive therapies. Tolcapone is sold under the brand name Tasmar.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nitecapone (3-(3,4-dihydroxy-5-nitrobenzylidine)-2,4- pentanedione, OR-462) is a selective, short-acting catechol-O-methyltransferase (COMT) inhibitor, whose main site of action is in the gastrointestinal tract. Nitecapone displays in vivo activity in peripheral tissues but does not penetrate the blood-brain barrier. The compound increases mechanical and thermal nociception and reduces neuropathic pain in diabetic rats and in a spinal nerve ligation model. Nitecapone has been shown to have a protective effect against ischemia-reperfusion injury in experimental heart transplantation and in Langendorff preparations. Nitecapone added to cardioplegia solution reduces cardiac neutrophil accumulation and transcoronary neutrophil activation during clinical cardiopulmonary bypass. Reflected by better left ventricular stroke volume, nitecapone treatment may be an additional way of reducing the deleterious effects of neutrophil activation during cardiopulmonary bypass. Nitecapone was patented as an antiparkinsonian agent but was never marketed.
Status:
Investigational
Source:
NCT03606694: Phase 2 Interventional Active, not recruiting Type 2 Diabetes Mellitus
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Dihydromyricetin is a flavonoid component from the Ampelopsis species japonica, megalophylla, and grossedentata; Cercidiphyllum japonicum; Hovenia dulcis; Rhododendron cinnabarinum; some Pinus species; and some Cedrus species, as well as Salix sachalinensis. Dihydromyricetin exerts a more rapid antidepressant-like effect than does a typical antidepressant, in association with enhancement of BDNF expression and inhibition of neuroinflammation. Dihydromyricetin inhibited the proliferative potential of fibroblasts in the lung cancer cells through targeting the activation of Erk1/2 and Akt. Therefore, there is scope for dihydromyricetin to be evaluated further for the treatment of lung cancer. Dihydromyricetin supplementation improves glucose and lipid metabolism as well as various biochemical parameters in patients with nonalcoholic fatty liver disease, and the therapeutic effects of dihydromyricetin are likely attributable to improved insulin resistance and decreases in the serum levels of tumor necrosis factor-alpha, cytokeratin-18, and fibroblast growth factor 21.
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
3,5-Dinitrocatechol (OR-486) is a selective inhibitor of catechol O-methyl transferase (COMT). COMT is an enzyme that plays a major role in catechol neurotransmitter deactivation. Inhibition of COMT can increase neurotransmitter levels, which provides a means of treatment for Parkinson's disease, schizophrenia, and depression.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Salsolidine is a simple 1-substituted tetrahydroisoquinoline isolated from many natural sources as the racemate and in its enantiomeric modifications. Stereoselective competitive inhibition of MAO A was found with the R enantiomer of salsolidine (Ki = 6 uM). Salsolidine also inhibits acetylcholinesterase (AChE), and buytlcholinesterase (BChE). Salsolidine may inhibit catechol-O-methyltransferase (COMT). Derivatives of salsolidine are neurotoxic and cytotoxic. R enantiomer of salsolidine is more potent than the S form.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Myricitrin is a naturally occurring polyphenol hydroxy flavonoid. Myricitrin has a variety of beneficial properties, such as antiviral, antimicrobial, antinociceptive, and anticarcinogenic activities. In particular, myricitrin possesses stronger oxidative resistance and free radical scavenging activity than other flavonol rhamnosides or quercetin. Myricitrin showed antipsychotic-like effects in animal models at doses that did not induce catalepsy or alter locomotor activity, suggesting that myricitrin may be a potential drug treatment for the positive symptoms of schizophrenia.
Status:
Possibly Marketed Outside US
Source:
NCT01380015: Phase 4 Interventional Completed Osteoarthritis of the Knee
(2011)
Source URL:
First approved in 2021
Source:
M020
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. Rosmarinic Acid seems to be able to suppress 5-lipoxygenase and 5-HETE synthesis (a pro-inflammatory compound in the omega-6 metabolic chain). Rosmarinic acid appeared to be effective in suppressing allergies in a dose-dependent manner, with 30% of the placebo group reporting symptom relief compared to 55.6% of the 50mg group and 70% of the 200mg group.