{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved OTC
Source:
21 CFR 346.12(c) anorectal:vasoconstrictor epinephrine hydrochloride
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 346.12(c) anorectal:vasoconstrictor epinephrine hydrochloride
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 346.12(c) anorectal:vasoconstrictor epinephrine hydrochloride
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine monophosphate (AMP) is a nucleotide, consisting of a phosphate group, the sugar ribose, and the nucleobase adenine. AMP is an activator of several enzymes in the tissues. In the glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP, the deciding factor for the reaction being the ratio between ATP and AMP. In medicine, AMP is used mainly as an alternative to adenosine for treatment of ischemia and as a tool compound to measure hyperresponsiveness of airways.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine monophosphate (AMP) is a nucleotide, consisting of a phosphate group, the sugar ribose, and the nucleobase adenine. AMP is an activator of several enzymes in the tissues. In the glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP, the deciding factor for the reaction being the ratio between ATP and AMP. In medicine, AMP is used mainly as an alternative to adenosine for treatment of ischemia and as a tool compound to measure hyperresponsiveness of airways.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine monophosphate (AMP) is a nucleotide, consisting of a phosphate group, the sugar ribose, and the nucleobase adenine. AMP is an activator of several enzymes in the tissues. In the glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP, the deciding factor for the reaction being the ratio between ATP and AMP. In medicine, AMP is used mainly as an alternative to adenosine for treatment of ischemia and as a tool compound to measure hyperresponsiveness of airways.
Status:
First approved in 1947
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mephentermine, an amphetamine-derived phenethylamine, is an alpha 1 adrenergic receptor agonist and a hypertensive drug. Mephentermine is mainly used as a vasopressor agent with a sympathomimetic action, primarily causing release of noradrenaline and increasing cardiac output due to positive inotropic effect on the myocardium. The injectable preparation of mephentermine is commonly used for the short-term treatment of various hypotensive states such as shock or hypotension accompanying myocardial infarction or spinal anesthesia or surgical procedures like cesarean section. There is evidence on the fetal metabolic effect and placental transfer of mephentermine. However, a few studies have shown that mephentermine is as effective as phenylephrine in preventing maternal hypotension after spinal anesthesia and has similar effect on neonatal outcome. It is being widely used in developing countries like India as it is much more economical than phenylephrine and offers ease of use as it does not necessitate multiple dilutions as injectable. It is also available in India as 10 mg oral tablets. Despite it was thought earlier to have a little stimulant effect its abuse potential has increased, especially in sports due to its stimulant properties. Like amphetamines, it has shown to increase athletic performance in strength exercises and endurance in a dose of 14 mg/70 kg body weight. It has been proposed that phentermine, which is the main metabolite of mephentermine, acts by inhibiting monoaminoxidases A and B. Mephentermine adverse effects has been related to CNS simulation, excessive rises in blood pressure, and arrhythmias. Wyamine Sulfate (brand name of mephentermine sulfate) approved by FDA in 1951 was discontinued in USA.
Status:
First approved in 1947
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mephentermine, an amphetamine-derived phenethylamine, is an alpha 1 adrenergic receptor agonist and a hypertensive drug. Mephentermine is mainly used as a vasopressor agent with a sympathomimetic action, primarily causing release of noradrenaline and increasing cardiac output due to positive inotropic effect on the myocardium. The injectable preparation of mephentermine is commonly used for the short-term treatment of various hypotensive states such as shock or hypotension accompanying myocardial infarction or spinal anesthesia or surgical procedures like cesarean section. There is evidence on the fetal metabolic effect and placental transfer of mephentermine. However, a few studies have shown that mephentermine is as effective as phenylephrine in preventing maternal hypotension after spinal anesthesia and has similar effect on neonatal outcome. It is being widely used in developing countries like India as it is much more economical than phenylephrine and offers ease of use as it does not necessitate multiple dilutions as injectable. It is also available in India as 10 mg oral tablets. Despite it was thought earlier to have a little stimulant effect its abuse potential has increased, especially in sports due to its stimulant properties. Like amphetamines, it has shown to increase athletic performance in strength exercises and endurance in a dose of 14 mg/70 kg body weight. It has been proposed that phentermine, which is the main metabolite of mephentermine, acts by inhibiting monoaminoxidases A and B. Mephentermine adverse effects has been related to CNS simulation, excessive rises in blood pressure, and arrhythmias. Wyamine Sulfate (brand name of mephentermine sulfate) approved by FDA in 1951 was discontinued in USA.
Status:
First approved in 1947
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mephentermine, an amphetamine-derived phenethylamine, is an alpha 1 adrenergic receptor agonist and a hypertensive drug. Mephentermine is mainly used as a vasopressor agent with a sympathomimetic action, primarily causing release of noradrenaline and increasing cardiac output due to positive inotropic effect on the myocardium. The injectable preparation of mephentermine is commonly used for the short-term treatment of various hypotensive states such as shock or hypotension accompanying myocardial infarction or spinal anesthesia or surgical procedures like cesarean section. There is evidence on the fetal metabolic effect and placental transfer of mephentermine. However, a few studies have shown that mephentermine is as effective as phenylephrine in preventing maternal hypotension after spinal anesthesia and has similar effect on neonatal outcome. It is being widely used in developing countries like India as it is much more economical than phenylephrine and offers ease of use as it does not necessitate multiple dilutions as injectable. It is also available in India as 10 mg oral tablets. Despite it was thought earlier to have a little stimulant effect its abuse potential has increased, especially in sports due to its stimulant properties. Like amphetamines, it has shown to increase athletic performance in strength exercises and endurance in a dose of 14 mg/70 kg body weight. It has been proposed that phentermine, which is the main metabolite of mephentermine, acts by inhibiting monoaminoxidases A and B. Mephentermine adverse effects has been related to CNS simulation, excessive rises in blood pressure, and arrhythmias. Wyamine Sulfate (brand name of mephentermine sulfate) approved by FDA in 1951 was discontinued in USA.
Status:
US Previously Marketed
Source:
VASOCORT HYDROXYAMPHETAMINE HYDROBROMIDE by SKF
(1961)
Source URL:
First marketed in 1935
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydroxyamphetamine is a derivative of amphetamines. Hydroxyamphetamine is intended mainly as local eye drops for diagnostic purposes. It is indirect sympathomimetic agent which cause dilation of the eye pupil before diagnostic test. Among the minor side effects from its use are: change in color vision, difficulty seeing at night, dry mouth, headache, increased sensitivity of eyes to sunlight, muscle stiffness or tightness and temporary stinging in the eyes. The main use of hydroxyamphetamines as eye drops is the diagnosis of Horner's syndrome which is characterized by nerve lesions. Hydroxyamphetamine hydrobromide is a component of FDA approved brand drug - Paremyd sterile ophthalmic solution (Hydroxyamphetamine hydrobromide, USP 1.0%, Tropicamide, USP 0.25%). Hydroxyamphetamine is an indirect-acting sympathomimetic, while tropicamide acts as a parasympatholytic.