U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 581 - 590 of 661 results

Status:
US Previously Marketed
Source:
THEOMINAL RS THEOBROMINE by WINTHROP
(1961)
Source URL:
First marketed in 1921
Source:
Theobromine Sodio-Salicylate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Theobromine is the primary alkaloid present in the cocoa and chocolate. Theobromine is found in the shells and beans of the cacao plant and it is extracted from the husks of the bean and used for the synthesis of caffeine. Theobromine is an adenosine A1 and A2a receptor antagonist. Thesodate is used as a vasodilator, a diuretic, and heart stimulant. And similar to caffeine, it may be useful in management of fatigue and orthostatic hypotension. The symptomatic adverse reactions produced by theobromine are more or less tolerable and if they become severe, they can be treated symptomatically, these include anxiety, restlessness, tremors, sleeplessness, nausea and vomiting, loss of appetite. Theobromine is currently not in use as a medicinal drug.
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.
Status:
Possibly Marketed Outside US
Source:
NCT00950183: Phase 4 Interventional Terminated Narcotic Consumption
(2007)
Source URL:
First approved in 2023
Source:
Digestive Patch by Guangzhou Hanhai Trading Co., Ltd
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

4-Methylaminorex is a stimulant drug, synthesized by McNeil Laboratories as an appetite suppressant. Its development was discontinued in favor of aminorex, which was withdrawn from the market when its use was linked with the development of fatal pulmonary hypertension. 4-Methylaminorex exists as four stereoisomers (±)-cis and (±)-trans. In neurochemical and behavioral studies trans-4S,5S-isomer was the most potent isomer followed by the equally effective cis-isomers, whereas trans-4R,5R-isomer was relatively ineffective. The racemic cis-4-methylaminorex has been reported to be the most frequently encountered form in illicit samples The drug is known under street names "U4Euh" or "Ice", is used a a stimulant and is classified as a schedule I substance. Neurochemical data suggest that behavioral effects of the isomers of 4-methylaminorex are related to drug-induced dopamine release.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



2′-Deoxyadenosine, a pair of deoxythymidine (T) in double-stranded DNA, is a substrate of adenosine deaminase. In case of absence of this enzyme, 2′-deoxyadenosine accumulates in T lymphocytes and kills these cells resulting in a genetic disorder known as adenosine deaminase severe combined immunodeficiency disease (ADA-SCID).
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

2′-Deoxycytidine (deoxyC) is one of the deoxy nucleosides, which after phosphorylation to dCTP is used to synthesize DNA via various DNA polymerases or reverse transcriptases. Deoxycytidine is phosphorylated by deoxycytidine kinase (dCK). This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes.
Aconitic Acid found in leaves and tubers of Aconitum napellus L., Ranunculaceae, in various species of Achillea (Compositae) and Equisetum (Equisetaceae), in beet root, and in sugar cane. It is indicated for the temporary relief of symptoms of chronic illness including fatigue, effects of toxin buildup, slowed metabolism, weakened constitution. The limited data on trans-aconitic acid indicate it to be less toxic than citric acid. Trans-aconitate salts appear to be excreted readily by the kidneys. There is no direct evidence that trans-aconitic acid is utilized as is the cis-aconitic acid isomer in mammalian metabolism although non-specific oxidation probably occurs.
Aconitic Acid found in leaves and tubers of Aconitum napellus L., Ranunculaceae, in various species of Achillea (Compositae) and Equisetum (Equisetaceae), in beet root, and in sugar cane. It is indicated for the temporary relief of symptoms of chronic illness including fatigue, effects of toxin buildup, slowed metabolism, weakened constitution. The limited data on trans-aconitic acid indicate it to be less toxic than citric acid. Trans-aconitate salts appear to be excreted readily by the kidneys. There is no direct evidence that trans-aconitic acid is utilized as is the cis-aconitic acid isomer in mammalian metabolism although non-specific oxidation probably occurs.
Aconitic Acid found in leaves and tubers of Aconitum napellus L., Ranunculaceae, in various species of Achillea (Compositae) and Equisetum (Equisetaceae), in beet root, and in sugar cane. It is indicated for the temporary relief of symptoms of chronic illness including fatigue, effects of toxin buildup, slowed metabolism, weakened constitution. The limited data on trans-aconitic acid indicate it to be less toxic than citric acid. Trans-aconitate salts appear to be excreted readily by the kidneys. There is no direct evidence that trans-aconitic acid is utilized as is the cis-aconitic acid isomer in mammalian metabolism although non-specific oxidation probably occurs.
Orotic acid is a minor dietary constituent. Historically it was believed to be part of the vitamin B complex and was called vitamin B13, but it is now known that it is not a vitamin and is synthesized in the body, where it arises as an intermediate in the pathway for the synthesis of pyrimidine nucleotides. Orotic acid is converted to UMP by UMP synthase, a multifunctional protein with both orotate phosphoribosyl transferase and orotidylate decarboxylase activity. The most frequently observed inborn error of pyrimidine nucleotide synthesis is a mutation of the multifunctional protein UMP synthase. As a result, plasma orotic acid accumulates to high concentrations, and increased quantities appear in the urine. Orotic acid levels are elevated in the urea cycle defects ornithine transcarbamylase (OTC) deficiency, citrullinemia and argininosuccinic acidemia, as well as the mitochondrial transport disorder hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Orotic acid is also elevated in hereditary orotic aciduria, or uridine monophosphate synthase deficiency, an autosomal recessive disorder characterized by megaloblastic anemia and crystalluria. In addition, orotic acid in combination with leflunomide is in the phase II of clinical trial to evaluate the clinical efficacy and safety of a combination in kidney transplant patients with high levels of Polyoma BK viruria for the purpose of preventing polyoma BK viremia and nephropathy, that could lead to kidney transplant loss from viral damage, acute rejection or both.
Retinal, All-trans is one of the forms of vitamin A. It is an isomer of 11-cis-retinal, transductor of light into the neural signals. Retinal, All-trans is converted to retinoic acid in vivo by the action of retinal dehydrogenase. Retinal, All-trans is associated with one of the two isoforms of cellular retinol-binding proteins (CRBP-I and CRBP-II). These proteins play important roles in retinoid biology and regulation of the metabolism of retinol and retinal.

Showing 581 - 590 of 661 results