U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 311 - 320 of 661 results

Fosdenopterin (NulibryTM) is a synthetic cyclic pyranopterin monophosphate that is being developed by Origin Biosciences (a subsidiary of BridgeBio Pharma) for the treatment of molybdenum cofactor deficiency (MoCD) type A. Patients with MoCD Type A have mutations in the MOCS1 gene leading to deficient MOCS1A/B dependent synthesis of the intermediate substrate, cPMP. Substrate replacement therapy with NULIBRY provides an exogenous source of cPMP, which is converted to molybdopterin. Molybdopterin is then converted to molybdenum cofactor, which is needed for the activation of molybdenum-dependent enzymes, including sulfite oxidase (SOX), an enzyme that reduces levels of neurotoxic sulfites. Fosdenopterin was approved by the US FDA in February 2021 for use in reducing the risk of mortality in paediatric and adult patients with MoCD type A.
Fosdenopterin (NulibryTM) is a synthetic cyclic pyranopterin monophosphate that is being developed by Origin Biosciences (a subsidiary of BridgeBio Pharma) for the treatment of molybdenum cofactor deficiency (MoCD) type A. Patients with MoCD Type A have mutations in the MOCS1 gene leading to deficient MOCS1A/B dependent synthesis of the intermediate substrate, cPMP. Substrate replacement therapy with NULIBRY provides an exogenous source of cPMP, which is converted to molybdopterin. Molybdopterin is then converted to molybdenum cofactor, which is needed for the activation of molybdenum-dependent enzymes, including sulfite oxidase (SOX), an enzyme that reduces levels of neurotoxic sulfites. Fosdenopterin was approved by the US FDA in February 2021 for use in reducing the risk of mortality in paediatric and adult patients with MoCD type A.
Telotristat (telotristat etiprate) is an ethyl ester prodrug which is hydrolyzed to its active moiety LP-778902 both in vivo and in vitro. Telotristat etiprate is an orally bioavailable, small-molecule, tryptophan hydroxylase (TPH) inhibitor. It is the first investigational drug in clinical studies to target TPH, an enzyme that triggers the excess serotonin production within metastatic neuroendocrine tumor (mNET) cells leading to carcinoid syndrome. Unlike existing treatments of carcinoid syndrome which reduce the release of serotonin outside tumor cells, telotristat etiprate reduces serotonin production within the tumor cells. By specifically inhibiting serotonin production telotristat may provide patients with more control over their disease. Telotristat etiprate has received Fast Track and Orphan Drug designation from the U.S. Food and Drug Administration and has been granted priority review by the FDA with a Prescription Drug User Fee Act (PDUFA) target action date of February 28, 2017.
Telotristat (telotristat etiprate) is an ethyl ester prodrug which is hydrolyzed to its active moiety LP-778902 both in vivo and in vitro. Telotristat etiprate is an orally bioavailable, small-molecule, tryptophan hydroxylase (TPH) inhibitor. It is the first investigational drug in clinical studies to target TPH, an enzyme that triggers the excess serotonin production within metastatic neuroendocrine tumor (mNET) cells leading to carcinoid syndrome. Unlike existing treatments of carcinoid syndrome which reduce the release of serotonin outside tumor cells, telotristat etiprate reduces serotonin production within the tumor cells. By specifically inhibiting serotonin production telotristat may provide patients with more control over their disease. Telotristat etiprate has received Fast Track and Orphan Drug designation from the U.S. Food and Drug Administration and has been granted priority review by the FDA with a Prescription Drug User Fee Act (PDUFA) target action date of February 28, 2017.
Telotristat (telotristat etiprate) is an ethyl ester prodrug which is hydrolyzed to its active moiety LP-778902 both in vivo and in vitro. Telotristat etiprate is an orally bioavailable, small-molecule, tryptophan hydroxylase (TPH) inhibitor. It is the first investigational drug in clinical studies to target TPH, an enzyme that triggers the excess serotonin production within metastatic neuroendocrine tumor (mNET) cells leading to carcinoid syndrome. Unlike existing treatments of carcinoid syndrome which reduce the release of serotonin outside tumor cells, telotristat etiprate reduces serotonin production within the tumor cells. By specifically inhibiting serotonin production telotristat may provide patients with more control over their disease. Telotristat etiprate has received Fast Track and Orphan Drug designation from the U.S. Food and Drug Administration and has been granted priority review by the FDA with a Prescription Drug User Fee Act (PDUFA) target action date of February 28, 2017.
Uridine triacetate (formally PN401) is an acetylated prodrug of uridine. Following oral administration, uridine triacetate is deacetylated by nonspecific esterases present throughout the body, yielding uridine in the circulation. Uridine triacetate under VISTOGARD trade name is a uridine replacement agent approved for the emergency treatment of fluorouracil or capecitabine overdose (regardless of the presence of symptoms) or early-onset severe or life-threatening cardiac or central nervous system (CNS) toxicity and/or early-onset unusually severe adverse reactions (eg, gastrointestinal [GI] toxicity and/or neutropenia) within 96 hours following the end of fluorouracil or capecitabine administration in adult and pediatric patients. Uridine competitively inhibits cell damage and cell death caused by fluorouracil. Fluorouracil is a cytotoxic antimetabolite that interferes with nucleic acid metabolism in normal and cancer cells. Cells anabolize fluorouracil to the cytotoxic intermediates 5-fluoro-2’-deoxyuridine-5’- monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). FdUMP inhibits thymidylate synthase, blocking thymidine synthesis. Thymidine is required for DNA replication and repair. Uridine is not found in DNA. The second source of fluorouracil cytotoxicity is the incorporation of its metabolite, FUTP, into RNA. This incorporation of FUTP into RNA is proportional to systemic fluorouracil exposure. Excess circulating uridine derived from VISTOGARD is converted into uridine triphosphate (UTP), which competes with FUTP for incorporation into RNA. Uridine triacetate is also approved for the treatment of hereditary orotic aciduria under XURIDEN trade name. Uridine triacetate provides uridine in the systemic circulation of patients with hereditary orotic aciduria who cannot synthesize adequate quantities of uridine due to a genetic defect in uridine nucleotide synthesis.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.

Showing 311 - 320 of 661 results