{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1989)
Source:
ANDA070915
(1989)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Nalbuphine is a semi-synthetic opioid agonist-antagonist used commercially as an analgesic under a variety of trade names, including Nubain and Manfine. Nalbuphine is an agonist at kappa opioid receptors and an antagonist at mu opioid receptors. Nalbuphine analgesic potency is essentially equivalent to that of morphine on a milligram basis up to a dosage of approximately 30 mg. The opioid antagonist activity of Nalbuphine is one-fourth as potent as nalorphine and 10 times that of pentazocine. Nalbuphine is indicated for the management of pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Nalbuphine can also be used as a supplement to balanced anesthesia, for preoperative and postoperative analgesia, and for obstetrical analgesia during labor and delivery. The onset of action of Nalbuphine occurs within 2 to 3 minutes after intravenous administration, and in less than 15 minutes following subcutaneous or intramuscular injection. The plasma half-life of nalbuphine is 5 hours, and in clinical studies, the duration of analgesic activity has been reported to range from 3 to 6 hours. Like pure µ-opioids, the mixed agonist-antagonist opioid class of drugs can cause side effects with initial administration of the drug but which lessen over time (“tolerance”). This is particularly true for the side effects of nausea, sedation and cognitive symptoms. These side effects can in many instances be ameliorated or avoided at the time of drug initiation by titrating the drug from a tolerable starting dose up to the desired therapeutic dose. An important difference between nalbuphine and the pure mu-opioid analgesic drugs is the “ceiling effect” on respiration. Respiratory depression is a potentially fatal side effect from the use of pure mu opioids. Nalbuphine has limited ability to depress respiratory function.
Status:
US Approved Rx
(1983)
Source:
ANDA086557
(1983)
Source URL:
First approved in 1948
Source:
CAFERGOT by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
The isolation and naming of ergotamine by Stoll occurred in 1925 but the complete elucidation of structure was not achieved until 1951, with synthesis following some 10 years later. Current sources of ergotamine include the isolation from field ergot and fermentation broth, as well as synthesis via coupling of (+)-lysergic acid with the appropriate synthetic peptidic moiety. Ergotamine was introduced into world commerce in 1921, and is currently marketed as its water soluble tartrate salt.
Ergotamine is a partial agonist at various tryptaminergic receptors (including the serotonin receptor [5-HT2]) and at various α-adrenergic receptors in blood vessels and various smooth muscles. It is likely that the major activity of ergotamine and related alkaloids is one of agonism at the 5-HT1B/1D receptors, just as with the “triptan” antimigraine compounds. FDA-labeled indications for ergotamine tartrate are in the abortion or prevention of vascular headaches, such as migraine, migraine variant, cluster headache, and histaminic cephalalgia.
Status:
US Approved Rx
(2021)
Source:
ANDA211919
(2021)
Source URL:
First approved in 1946
Source:
NDA006035
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Methylergometrine (other names include methylergonovine, methylergobasin, methergine, and D-lysergic acid 1-butanolamide) is a synthetic analogue of ergonovine, a psychedelic alkaloid found in ergot, and many species of morning glory. In general, the effects of all the ergot alkaloids appear to results from their actions as partial agonists or antagonists at adrenergic, dopaminergic, and tryptaminergic receptors. The spectrum of effects depends on the agent, dosage, species, tissue, and experimental or physiological conditions. All of the alkaloids of ergot significantly increase the motor activity of the uterus. After small doses contractions are increased in force or frequency, or both, but are followed by a normal degree of relaxation. As the dose is increased, contractions become more forceful and prolonged, resting tonus is markedly increased, and sustained contracture can result. Methylergometrine acts directly on the smooth muscle of the uterus and increases the tone, rate, and amplitude of rhythmic contractions through binding and the resultant antagonism of the dopamine D1 receptor. Thus, it induces a rapid and sustained tetanic uterotonic effect which shortens the third stage of labor and reduces blood loss. Methylergometrine is used for the prevention and control of excessive bleeding following vaginal childbirth.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(7) cough/cold:nasal decongestant oxymetazoline hydrochloride
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Oxymetazoline is an adrenergic alpha-agonist, direct acting sympathomimetic, used as a vasoconstrictor to relieve nasal congestion The sympathomimetic action of oxymetazoline constricts the smaller arterioles of the nasal passages, producing a prolonged (up to 12 hours), gentle and decongesting effect. Oxymetazoline elicits relief of conjunctival hyperemia by causing vasoconstriction of superficial conjunctival blood vessels. The drug's action has been demonstrated in acute allergic conjunctivitis and in chemical (chloride) conjunctivitis. Oxymetazoline is self-medication for temporary relief of nasal congestion associated with the common cold, hay fever, or other upper respiratory allergies. Oxymetazoline is available over-the-counter as a topical decongestant in the form of oxymetazoline hydrochloride in nasal sprays such as Afrin, Operil, Dristan, Dimetapp, oxyspray, Facimin, Nasivin, Nostrilla, Sudafed OM, Vicks Sinex, Zicam, SinuFrin, and Mucinex Full Force. Due to its vasoconstricting properties, oxymetazoline is also used to treat nose bleeds and eye redness.
Status:
Investigational
Source:
INN:arhalofenate [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Arhalofenate is a uricosuric drug which lowers serum urate by blocking its reabsorption by the proximal tubules of the kidney. Arhalofenate activity is mediated by inhibition of URAT1, OAT4 and OAT10. Additionally, arhalofenate has been suggested to exert potent anti-inflammatory activity. Arhalofenate has completed Phase 2 and is ready to advance to Phase 3 as a novel potential treatment for gout. The drug was also tested in patients with type 2 diabetes mellitus (phase III study), where it demonstrated its ability to lower glucose level, acting as a selective, partial PPAR-gamma agonist. However, the development of arhalofenate as an anti-diabetic drug was terminated.
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tiospirone (TSP) is an atypical antipsychotic drug. Tiaspirone appeared to be a promising antipsychotic agent as it didn`t cause extrapyramidal syndromes. It has 5HT-2 antagonistic properties as well as affinity for D2, 5HT-1a, 5HT-6 and sigma receptors. Tiospirone was in phase III clinical trials for the treatment of attention hyperactivity disorder with Mead Johnson in the USA but its development appears to have been discontinued.
Status:
Investigational
Source:
INN:pipequaline [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pipequaline (PK-8165, 2-phenyl-4[2-(4-piperidinyl) ethyl]quinoline) is a benzodiazepine receptor partial agonist.
Status:
Investigational
Source:
INN:pozanicline [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Pozanicline is an alpha4-beta2 neuronal nicotinic receptor partial agonist. It had been in phase II clinical trials for the treatment of attention hyperactivity disorder and Alzheimer’s disease. It was tested for the treatment of schizophrenia too. All these studies were discontinued. Modulation of hippocampal learning and memory using Pozanicline in animal model was effective as novel therapeutic strategies for nicotine addiction. However future clinical trial was terminated.
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Alvameline is a partial agonist of the M1 mAChR that also displays M2/M3 antagonist effects. It readily crosses the blood-brain barrier. It has an effect profile that makes it of interest to test its ability to counteract bladder overactivity in humans. Behaviorally, alvameline has been shown to significantly improve Morris water maze (MWM) performance in both young and ageimpaired rats. It failed to improve cognition in patients with mild to moderate Alzheimer's disease.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Dianicline binds with high affinity to the rat and human alpha4beta2 nicotinic acetylcholine receptor (nAChR) subtypes and displays selectivity for the alpha4beta2 nAChR. Electrophysiological experiments indicate that dianicline is a partial agonist at the human alpha4beta2 nAChR subtype. Pretreatment with dianicline reduces the dopamine-releasing and discriminative effects of nicotine. Dianicline shows activity in animal models of nicotine dependence at doses devoid of unwanted side effects typically observed with nicotine. Dianicline did not increase cigarette smoking abstinence rates beyond the initial phase of treatment. However, self-reported craving and nicotine withdrawal symptoms were reduced. The most common adverse event for subjects receiving dianicline was nausea. Other gastrointestinal disorders also tended to be more frequent in the dianicline group, including diarrhea.