U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 7941 - 7950 of 8504 results

Status:
Possibly Marketed Outside US
Source:
NCT04704518: Phase 4 Interventional Completed Photorefractive Keratectomy
(2022)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Trehalose, a naturally occurring disaccharide of glucose that appears to function in an anhydrobiotic capacity in many organisms. Bioblast Pharma study trehalose in Phase 2 for treating patients with Oculopharyngeal Muscular Dystrophy (OPMD) and spinocerebellar ataxia, type 3. In OPMD trehalose prevents the aggregation of the pathological protein (PABPN1) in muscle cells, the hallmark of the disease, by stabilizing the protein, reducing the formation of protein aggregations, and promoting their clearance from cells through autophagy, thus preventing muscle cell death. Trehalose induces autophagy via mTOR independent pathway. It activates TFEB, a master controller of lysosomal biogenesis and autophagy, by inhibiting AKT which is a negative regulator of TFEB that acts by direct phosphorylation (and inhibition) of TFEB. In addition, trehalose protects cells from hypoxic and anoxic injury and suppresses protein aggregation. In vivo studies with trehalose show cellular and behavioral beneficial effects in animal models of neurodegenerative diseases. Trehalose was in phase III clinical trial to study if it was possible to use the drug as add-on therapy in Bipolar Depression. Also in combination with hyaluronate, it can be used to treat dry eye syndrome. Trehalose protects the epithelial cells on the ocular surface, improving their resistance to the daily stresses of dry environments and tear film changes in a dry eye.
Status:
Possibly Marketed Outside US
Source:
Canada:ERYTHROSINE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Erythrosine B (also known as Red No. 3), a Food and Drug Administration (FDA)-approved red food dye, is found in cosmetics and food. It is also used as a plasma stain for nerve cells and staining bacteria in soil. It was studied the modulating capabilities of erythrosine B on amyloid-beta peptide (Aβ) aggregation and Aβ-associated impaired neuronal cell function. It is known, that aggregation Aβ is closely linked to the development of Alzheimer's disease pathology.
Status:
Possibly Marketed Outside US
Source:
Canada:ERYTHROSINE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Erythrosine B (also known as Red No. 3), a Food and Drug Administration (FDA)-approved red food dye, is found in cosmetics and food. It is also used as a plasma stain for nerve cells and staining bacteria in soil. It was studied the modulating capabilities of erythrosine B on amyloid-beta peptide (Aβ) aggregation and Aβ-associated impaired neuronal cell function. It is known, that aggregation Aβ is closely linked to the development of Alzheimer's disease pathology.
Status:
Possibly Marketed Outside US
Source:
NCT04683146: Phase 4 Interventional Unknown status Antisepsis
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

A. W. Van Hoffman was the first to isolate sorbic acid from the berries of the mountain ash tree in the year 1859. The antimicrobial (preservative) properties of sorbic acid were recognized in the 1940's. In the late 1940's and 1950's it became commercially available. Sorbic acid and its potassium salt are now used in many countries in the production of sweet white wines. In the United States, BATF permits the use of sorbic acid and potassium sorbate to preserve wine. The maximum concentration of sorbic acid allowed in finished wine is 300 mg/L, (300 ppm). The antimicrobial action of sorbic acid is primarily against yeasts and molds. It's action against bacteria appears to be selective. The soluble sorbates are preferred when it is desired to use the preservative in liquid form, or when aqueous systems are to be preserved. Sodium sorbate in solid form is unstable and very rapidly undergoes oxidation on exposure to atmospheric oxygen. It is therefore not produced on the industrial scale. Aqueous solutions of sodium sorbate remain stable for some time. Calcium sorbate is used in the manufacture of fungistatic wrappers because it is highly stable to oxidation, but this use is very limited. Sorbic acid and sorbates can be directly added into the product. The products can be dipped or sprayed with aqueous solutions of sorbates. Dusting of food with dry sorbic acid is also possible but less recommended because sorbic acid irritates the skin and mucous membranes. Sorbic acid and particularly calcium sorbate can be used as active substances in fungistatic wrappers. A general survey of the numerous uses of sorbic acid in the food sector will be given. Some fields of application will be discussed that are either unimportant or not permitted in the U.K.
Status:
Possibly Marketed Outside US
Source:
NCT04683146: Phase 4 Interventional Unknown status Antisepsis
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

A. W. Van Hoffman was the first to isolate sorbic acid from the berries of the mountain ash tree in the year 1859. The antimicrobial (preservative) properties of sorbic acid were recognized in the 1940's. In the late 1940's and 1950's it became commercially available. Sorbic acid and its potassium salt are now used in many countries in the production of sweet white wines. In the United States, BATF permits the use of sorbic acid and potassium sorbate to preserve wine. The maximum concentration of sorbic acid allowed in finished wine is 300 mg/L, (300 ppm). The antimicrobial action of sorbic acid is primarily against yeasts and molds. It's action against bacteria appears to be selective. The soluble sorbates are preferred when it is desired to use the preservative in liquid form, or when aqueous systems are to be preserved. Sodium sorbate in solid form is unstable and very rapidly undergoes oxidation on exposure to atmospheric oxygen. It is therefore not produced on the industrial scale. Aqueous solutions of sodium sorbate remain stable for some time. Calcium sorbate is used in the manufacture of fungistatic wrappers because it is highly stable to oxidation, but this use is very limited. Sorbic acid and sorbates can be directly added into the product. The products can be dipped or sprayed with aqueous solutions of sorbates. Dusting of food with dry sorbic acid is also possible but less recommended because sorbic acid irritates the skin and mucous membranes. Sorbic acid and particularly calcium sorbate can be used as active substances in fungistatic wrappers. A general survey of the numerous uses of sorbic acid in the food sector will be given. Some fields of application will be discussed that are either unimportant or not permitted in the U.K.
Status:
Possibly Marketed Outside US
Source:
NCT04683146: Phase 4 Interventional Unknown status Antisepsis
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

A. W. Van Hoffman was the first to isolate sorbic acid from the berries of the mountain ash tree in the year 1859. The antimicrobial (preservative) properties of sorbic acid were recognized in the 1940's. In the late 1940's and 1950's it became commercially available. Sorbic acid and its potassium salt are now used in many countries in the production of sweet white wines. In the United States, BATF permits the use of sorbic acid and potassium sorbate to preserve wine. The maximum concentration of sorbic acid allowed in finished wine is 300 mg/L, (300 ppm). The antimicrobial action of sorbic acid is primarily against yeasts and molds. It's action against bacteria appears to be selective. The soluble sorbates are preferred when it is desired to use the preservative in liquid form, or when aqueous systems are to be preserved. Sodium sorbate in solid form is unstable and very rapidly undergoes oxidation on exposure to atmospheric oxygen. It is therefore not produced on the industrial scale. Aqueous solutions of sodium sorbate remain stable for some time. Calcium sorbate is used in the manufacture of fungistatic wrappers because it is highly stable to oxidation, but this use is very limited. Sorbic acid and sorbates can be directly added into the product. The products can be dipped or sprayed with aqueous solutions of sorbates. Dusting of food with dry sorbic acid is also possible but less recommended because sorbic acid irritates the skin and mucous membranes. Sorbic acid and particularly calcium sorbate can be used as active substances in fungistatic wrappers. A general survey of the numerous uses of sorbic acid in the food sector will be given. Some fields of application will be discussed that are either unimportant or not permitted in the U.K.
Status:
Possibly Marketed Outside US
Source:
Bacitracin by Goorley, J.T.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bacitracin is a mixture of related cyclic polypeptides produced by organisms of the licheniformis group of Bacillus subtilis var Tracy. As a polypeptide, toxic, and difficult to use chemical, bacitracin doesn't work well orally, however is very effective topically. Bacitracin exerts pronounced antibacterial action in vitro against a variety of gram-positive and a few gram-negative organisms. However, among systemic diseases, only staphylococcal infections qualify for consideration of bacitracin therapy. Bacitracin is composed of a mixture of related compounds with varying degrees of antibacterial activity. Notable fractions include bacitracin A, A1, B, B1, B2, C, D, E, F, G, and X. Bacitracin A has been found to have the most antibacterial activity. Bacitracin intereferes with the dephosphorylation of the 55-carbon, biphosphate lipid transport molecule C55-isoprenyl pyrophosphate (undecaprenyl pyrophosphate), which carries the building blocks of the peptidoglycan bacterial cell wall outside the inner membrane for construction. Bacitracin binds divalent transition metal ions (Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)) which binds and oxidatively cleave DNA. Used for the treatment of infants with pneumonia and empyema caused by staphylococci shown to be susceptible to the drug. Also used in ointment form for topical treatment of a variety of localized skin and eye infections, as well as for the prevention of wound infections. Used against gram positive bacteria. Bacitracin is also used as an inhibitor of proteases and other enzymes. However, specific activity of bactracin's inhibition of protein disulfide isomerase has been called into question.
Status:
Possibly Marketed Outside US
Source:
NCT00442962: Phase 4 Interventional Completed HIV Infections
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Maleic acid monosodium salt. Used in water soluble polymers preparation.
Status:
Possibly Marketed Outside US
Source:
NCT00442962: Phase 4 Interventional Completed HIV Infections
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Maleic acid monosodium salt. Used in water soluble polymers preparation.
Status:
Possibly Marketed Outside US
Source:
NCT00442962: Phase 4 Interventional Completed HIV Infections
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Maleic acid monosodium salt. Used in water soluble polymers preparation.

Showing 7941 - 7950 of 8504 results