U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 7771 - 7780 of 8504 results

Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)


Octenidine dihydrochloride is a cationic surfactant, with antimicrobial activity against Gram-positive and Gram-negative bacteria. Octenidine approved as a medicinal substance in several European countries and used for skin antisepsis in combination with aliphatic alcohols, e.g. propan-1-ol and propan-2-ol, or with detergents such as antiseptic soap. Octenidine is also used for antisepsis on wounds and mucosa either as a single substance, as an approved combination of Octenidine and phenoxyethanol. Octenidine is virtually not absorbed via the skin or mucous membranes. Because Octenidine is only approved and used topically and is virtually not absorbed, no systemic effects are to be expected. Therefore, no further pharmacokinetic studies or studies on behalf of metabolism have been conducted. Octenidine is easy and safe to handle, chemically stable, not inflammable, without resistance development and low toxicity to man and the environment alike. Its popularity among therapists and wound care specialists is based on good clinical results, easy and pain-free application and local tolerance. Beside readily available combinations with phenoxyethanol, mouth rinses, and vaginal applications, semi-fluid preparations and dressings are described.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (RACEMIC)


Stepronin is clinically used as an expectorant. It inhibits airway secretion in vitro by both decreasing Cl- secretion from epithelial cells and mucus glycoprotein secretion from submucosal glands. The mucolytic activity of stepronine does not involve the gastric mucous coating and that the drug does not exert adverse effects on the gastric mucosa. It is a new chemical immunosuppressant drug, which has the effect of preventing graft-versus-host-disease (GVHD) in a mouse model. The mechanism by which this compound acts as an immunosuppressant appears to be similar to cyclosporine A (CyA), although, in contrast to CyA, it is not toxic for animals and humans. Stepronin has an antiviral effect as well and is able to block, indirectly, the human immunodeficiency virus–1 (HIV-1) replication in mononuclear cells in vitro.
Butyric acid (butanoic acid) belongs to a group of short-chain fatty acids and is thought to play several beneficial roles in the gastrointestinal tract. The butyric anion is easily absorbed by enteric cells and used as a main source of energy. Moreover, butyric acid is an important regulator of colonocyte proliferation and apoptosis, gastrointestinal tract motility and bacterial microflora composition in addition to its involvement in many other processes including immunoregulation and anti-inflammatory activity. Butyric acid shows a protective effect in inflammatory response secondary to inflammatory bowel diseases. A beneficial effect of butyric acid as one constituent of a multifaceted mechanism modulating gastrointestinal function has also been stressed in patients with the stoma and coexisting constipation. Butyric acid supplementation combined with the use of probiotics should be adopted as one of the basic therapeutic strategies in this patient group, preceding treatment with laxatives. Sodium butyrate in the form of enemas (combined in a mixture with A-300 silicon dioxide) may be a successful method of therapeutic management in patients with radiation proctitis. Sodium butyrate may also prevent diarrhea through an increased passive absorption of water in the colon and its effects on the gut microflora.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fosfructose is a cytoprotective natural sugar phosphate under development by Questcor (formerly Cypros) for the potential treatment of cardiovascular ischemia, sickle cell anemia and asthma. Fosfructose acts by stimulating anaerobic glycolysis which generates adenosine triphosphate under ischemic conditions and improve the cellular energy metabolism in ischemic and hypoperfused tissues. Hypoxia forces ischemic tissue to anaerobic glycolysis for energy, which yields two molecules of ATP per glucose in contrast to 36 molecules of ATP generated during oxidative phosphorylation . Addition of exogenous Fosfructose can produce two more molecules of ATP in an uncompensated anaerobic environment and hence facilitate the recovery of ischemia tissue. Fosfructose breaks down into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, which will further break down into two molecules of pyruvate and finally produce two molecules of ATP. Other mechanisms include inhibition of the generation of oxygen free radicals by neutrophils, stabilization of cell membranes, and maintainance of the correct xanthine dehydrogenase/oxidase ratio by preventing the depletion of phosphorylated compounds in ischemic tissues. In myocardial infarction patients, FDP can improve the hemodynamic parameters, attenuate ECG proven ischemic injury and arrhythmia, prevent ATP and creatine phosphate depletion from ischemic myocardium, reduce infarct size, and increase survival rate. Exogenously administered Fosfructose has also been proven beneficial for a variety of other ischemic organs, such as liver, kidney, bowel and even brain as a consequence of its ability to penetrate to the blood brain barrier. Fosfructose trisodium had been in phase I clinical trials for the treatment of heart transplant rejection. Fosfructose trisodium had been in phase II clinical trials for the treatment of heart failure, perioperativ eischaemia and reperfusion injury. Fosfructose trisodium had been in phase III clinical trials for the treatment of sickle cell anaemia. However, all these research has been discontinued. In China, FDP has been approved and marketed as a commercial drug.
Pyridoxal is a pyridinecarbaldehyde and a form of vitamin B 6 which is converted to pyridoxal phosphate. Pyridoxal 5'-phosphate is involved in a wide range of biochemical reactions, including the metabolism of amino acids and glycogen, the synthesis of nucleic acids, hemoglobin, sphingomyelin, and other sphingolipids, and the synthesis of the neurotransmitters serotonin, dopamine, norepinephrine and gamma-aminobutyric acid (GABA). Pyridoxal is one of the natural forms available of vitamin B6, therefore, it is used for nutritional supplementation and for treating dietary shortage or imbalances. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fosfructose is a cytoprotective natural sugar phosphate under development by Questcor (formerly Cypros) for the potential treatment of cardiovascular ischemia, sickle cell anemia and asthma. Fosfructose acts by stimulating anaerobic glycolysis which generates adenosine triphosphate under ischemic conditions and improve the cellular energy metabolism in ischemic and hypoperfused tissues. Hypoxia forces ischemic tissue to anaerobic glycolysis for energy, which yields two molecules of ATP per glucose in contrast to 36 molecules of ATP generated during oxidative phosphorylation . Addition of exogenous Fosfructose can produce two more molecules of ATP in an uncompensated anaerobic environment and hence facilitate the recovery of ischemia tissue. Fosfructose breaks down into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, which will further break down into two molecules of pyruvate and finally produce two molecules of ATP. Other mechanisms include inhibition of the generation of oxygen free radicals by neutrophils, stabilization of cell membranes, and maintainance of the correct xanthine dehydrogenase/oxidase ratio by preventing the depletion of phosphorylated compounds in ischemic tissues. In myocardial infarction patients, FDP can improve the hemodynamic parameters, attenuate ECG proven ischemic injury and arrhythmia, prevent ATP and creatine phosphate depletion from ischemic myocardium, reduce infarct size, and increase survival rate. Exogenously administered Fosfructose has also been proven beneficial for a variety of other ischemic organs, such as liver, kidney, bowel and even brain as a consequence of its ability to penetrate to the blood brain barrier. Fosfructose trisodium had been in phase I clinical trials for the treatment of heart transplant rejection. Fosfructose trisodium had been in phase II clinical trials for the treatment of heart failure, perioperativ eischaemia and reperfusion injury. Fosfructose trisodium had been in phase III clinical trials for the treatment of sickle cell anaemia. However, all these research has been discontinued. In China, FDP has been approved and marketed as a commercial drug.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fosfructose is a cytoprotective natural sugar phosphate under development by Questcor (formerly Cypros) for the potential treatment of cardiovascular ischemia, sickle cell anemia and asthma. Fosfructose acts by stimulating anaerobic glycolysis which generates adenosine triphosphate under ischemic conditions and improve the cellular energy metabolism in ischemic and hypoperfused tissues. Hypoxia forces ischemic tissue to anaerobic glycolysis for energy, which yields two molecules of ATP per glucose in contrast to 36 molecules of ATP generated during oxidative phosphorylation . Addition of exogenous Fosfructose can produce two more molecules of ATP in an uncompensated anaerobic environment and hence facilitate the recovery of ischemia tissue. Fosfructose breaks down into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, which will further break down into two molecules of pyruvate and finally produce two molecules of ATP. Other mechanisms include inhibition of the generation of oxygen free radicals by neutrophils, stabilization of cell membranes, and maintainance of the correct xanthine dehydrogenase/oxidase ratio by preventing the depletion of phosphorylated compounds in ischemic tissues. In myocardial infarction patients, FDP can improve the hemodynamic parameters, attenuate ECG proven ischemic injury and arrhythmia, prevent ATP and creatine phosphate depletion from ischemic myocardium, reduce infarct size, and increase survival rate. Exogenously administered Fosfructose has also been proven beneficial for a variety of other ischemic organs, such as liver, kidney, bowel and even brain as a consequence of its ability to penetrate to the blood brain barrier. Fosfructose trisodium had been in phase I clinical trials for the treatment of heart transplant rejection. Fosfructose trisodium had been in phase II clinical trials for the treatment of heart failure, perioperativ eischaemia and reperfusion injury. Fosfructose trisodium had been in phase III clinical trials for the treatment of sickle cell anaemia. However, all these research has been discontinued. In China, FDP has been approved and marketed as a commercial drug.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ABSOLUTE)



Fosfructose is a cytoprotective natural sugar phosphate under development by Questcor (formerly Cypros) for the potential treatment of cardiovascular ischemia, sickle cell anemia and asthma. Fosfructose acts by stimulating anaerobic glycolysis which generates adenosine triphosphate under ischemic conditions and improve the cellular energy metabolism in ischemic and hypoperfused tissues. Hypoxia forces ischemic tissue to anaerobic glycolysis for energy, which yields two molecules of ATP per glucose in contrast to 36 molecules of ATP generated during oxidative phosphorylation . Addition of exogenous Fosfructose can produce two more molecules of ATP in an uncompensated anaerobic environment and hence facilitate the recovery of ischemia tissue. Fosfructose breaks down into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, which will further break down into two molecules of pyruvate and finally produce two molecules of ATP. Other mechanisms include inhibition of the generation of oxygen free radicals by neutrophils, stabilization of cell membranes, and maintainance of the correct xanthine dehydrogenase/oxidase ratio by preventing the depletion of phosphorylated compounds in ischemic tissues. In myocardial infarction patients, FDP can improve the hemodynamic parameters, attenuate ECG proven ischemic injury and arrhythmia, prevent ATP and creatine phosphate depletion from ischemic myocardium, reduce infarct size, and increase survival rate. Exogenously administered Fosfructose has also been proven beneficial for a variety of other ischemic organs, such as liver, kidney, bowel and even brain as a consequence of its ability to penetrate to the blood brain barrier. Fosfructose trisodium had been in phase I clinical trials for the treatment of heart transplant rejection. Fosfructose trisodium had been in phase II clinical trials for the treatment of heart failure, perioperativ eischaemia and reperfusion injury. Fosfructose trisodium had been in phase III clinical trials for the treatment of sickle cell anaemia. However, all these research has been discontinued. In China, FDP has been approved and marketed as a commercial drug.
Pyridoxal is a pyridinecarbaldehyde and a form of vitamin B 6 which is converted to pyridoxal phosphate. Pyridoxal 5'-phosphate is involved in a wide range of biochemical reactions, including the metabolism of amino acids and glycogen, the synthesis of nucleic acids, hemoglobin, sphingomyelin, and other sphingolipids, and the synthesis of the neurotransmitters serotonin, dopamine, norepinephrine and gamma-aminobutyric acid (GABA). Pyridoxal is one of the natural forms available of vitamin B6, therefore, it is used for nutritional supplementation and for treating dietary shortage or imbalances. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal.

Showing 7771 - 7780 of 8504 results