U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 2778 results

Iloperidone, also known as Fanapt, Fanapta, and previously known as Zomaril, is an atypical antipsychotic for the treatment of schizophrenia. Iloperidone shows high affinity and maximal receptor occupancy for dopamine D2 receptors in the caudate nucleus and putamen of the brains of schizophrenic patients. The improvement in cognition is attributed to iloperidone's high affinity for α adrenergic receptors. Iloperidone also binds with high affinity to serotonin 5-HT2a and dopamine 3 receptors. Iloperidone binds with moderate affinity to dopamine D4, serotonin 5-HT6 and 5-HT7, and norepinephrine NEα1 receptors. Furthermore, iloperidone binds with weak affinity to serotonin 5-HT1A, dopamine D1, and histamine H1 receptors. Iloperidone is indicated for the treatment of acute schizophrenia.
Asenapine is an antipsychotic drug. The mechanism of action of asenapine, as with other drugs having efficacy in schizophrenia and bipolar disorder, is unknown. Asenapine exhibits high affinity for serotonin 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 receptors, dopamine D2, D3, D4, and D1 receptors, α1 and α2-adrenergic receptors, and histamine H1 receptors, and moderate affinity for H2 receptors. In in vitro assays asenapine acts as an antagonist at these receptors. It has been suggested that the efficacy of asenapine in schizophrenia is mediated through a combination of antagonist activity at D2 and 5-HT2A receptors. Asenapine is approved by the FDA for the acute treatment of schizophrenia in adults and for the acute treatment of manic or mixed episodes associated with bipolar I disorder, with or without psychotic features, in adults.
Tolvaptan is a selective and competitive arginine vasopressin receptor 2 antagonist. Vasopressin acts on the V2 receptors found in the walls of the vasculature and luminal membranes of renal collecting ducts. By blocking V2 receptors in the renal collecting ducts, aquaporins do not insert themselves into the walls thus preventing water absorption. This action ultimately results in an increase in urine volume, decrease urine osmolality, and increase electrolyte-free water clearance to reduce intravascular volume and an increase serum sodium levels. Tolvaptan is especially useful for heart failure patients as they have higher serum levels of vasopressin. Tolvaptan is used to treat low blood sodium levels (hyponatremia) associated with various conditions like congestive heart failure, cirrhosis, and syndrome of inappropriate antidiuretic hormones (SIADH). FDA approved on May 19, 2009. Tolvaptan is sold under the trade names Samsca and Jinarc.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Methylnaltrexone, is a peripherally acting μ-opioid receptor antagonist that acts on the gastrointestinal tract to inhibit the opioid-induced decrease in gastric motility and transit time. It is used to treat opiate-induced constipation in adults with chronic non-cancer pain and in adults with advanced illness who are receiving palliative care.
Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.
Status:
First approved in 2008

Class (Stereo):
CHEMICAL (ABSOLUTE)



Alvimopan (LY246736, ADL 8-2698, trade name Entereg) is a potent, peripherally selective mu-opioid receptor antagonist. Alvimopan was developed by Adolor Corporation (now Cubist Pharmaceuticals) and GlaxoSmithKline for the treatment of postoperative ileus. Postoperative ileus is the impairment of gastrointestinal motility after intra-abdominal surgery or other non-abdominal surgeries. This may potentially delay gastrointestinal recovery and hospital discharge until its resolution. Morphine and other mu-opioid receptor agonists are universally used for the treatment of acute postsurgical pain; however, they are known to have an inhibitory effect on gastrointestinal motility and may prolong the duration of postoperative ileus. Following oral administration, alvimopan antagonizes the peripheral effects of opioids on gastrointestinal motility and secretion by competitively binding to gastrointestinal tract mu-opioid receptors.
Plerixafor is a bicyclam molecule, which has been identified as a specific antagonist of CXCR4. It had originally been developed as an inhibitor of T-tropic human immunodeficiency virus, but later demonstrated to be an effective mobilizer of hematopoietic stem cells. Plerixafor was approved by FDA for autologous transplantation (in combination with granulocyte-colony stimulating factor) in patients with non-Hodgkin's lymphoma and multiple myeloma under the name Mozobil.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Silodosin is a selective antagonsit of alpha-1a adrenergic receptor which was developed by Kissei Pharmaceutical. The drug was approved by FDA under the name Rapaflo for the treatment of signs and symptoms associated with benign prostatic hyperplasia.
DEGARELIX (FIRMAGON®) is a synthetic linear decapeptide amide containing seven unnatural amino acids, five of which are D-amino acids. It is a GnRH receptor antagonist. It binds reversibly to the pituitary GnRH receptors, thereby reducing the release of gonadotropins and consequently testosterone. DEGARELIX (FIRMAGON®) is effective in achieving and maintaining testosterone suppression below the castration level of 50 ng/dL and is indicated for the treatment of patients with advanced prostate cancer.
Ambrisentan (alternative Names: BSF 208075; GSK 1325760; GSK1325760A; Letairis) is an endothelin receptor antagonist that is selective for the endothelin type-A (ETA) receptor. The chemical name of ambrisentan is (+)-(2S)-2-[(4,6-dimethylpyrimidin-2-yl)oxy]-3-methoxy-3,3-diphenylpropanoic acid. Ambrisentan is indicated for the treatment of pulmonary arterial hypertension. It is approved in Europe, Canada and the United States for use as a single agent to improve exercise ability and delay clinical worsening. In addition, it is approved in the United States for use in combination with tadalafil to reduce the risks of disease progression, hospitalization and to improve exercise ability. As an endothelin receptor antagonist, ambrisentan prevents endogenous endothelin peptide from constricting the muscles in blood vessels, allowing them to relax and permit a reduction in blood pressure. Endothelin-1 (ET-1) is a potent autocrine and paracrine peptide. Two receptor subtypes, ETA and ETB, mediate the effects of ET-1 in the vascular smooth muscle and endothelium. The primary actions of ETA are vasoconstriction and cell proliferation, while the predominant actions of ETB are vasodilation, antiproliferation, and ET-1 clearance. In patients with PAH, plasma ET-1 concentrations are increased as much as 10-fold and correlate with increased mean right atrial pressure and disease severity. ET-1 and ET-1 mRNA concentrations are increased as much as 9-fold in the lung tissue of patients with PAH, primarily in the endothelium of pulmonary arteries. These findings suggest that ET-1 may play a critical role in the pathogenesis and progression of PAH. Ambrisentan is a high-affinity (Ki=0.011 nM) ETA receptor antagonist with a high selectivity for the ETA versus ETB receptor (>4000-fold). The clinical impact of high selectivity for ETA is not known.