{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
COLD CAPSULE IV by GRAHAM DM
(1985)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Phenylpropanolamine belongs to the sympathomimetic amine class of drugs and is structurally related to ephedrine. The effects of phenylpropanolamine are largely the result of alpha-adrenergic agonist activity resulting from both direct stimulation of adrenergic receptors and release of neuronal norepinephrine. Phenylpropanolamine is mainly used as a nasal decongestant. Phenylpropanolamine is also used as anorexiant in obesity and to treat urinary incontinence in veteranary. Phenylpropanolamine containing products has been withdrawn by FDA due to the association of phenylpropanolamine use with increased risk of hemorrhagic stroke.
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.