{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Showing 1421 - 1430 of 1430 results
Status:
US Approved Rx
(2020)
Source:
ANDA212060
(2020)
Source URL:
First approved in 1939
Source:
LIQUAEMIN SODIUM by ORGANON USA INC
Source URL:
Class:
POLYMER
Нeparin (or Unfractionated heparin ) is an anticoagulant indicated for both the prevention and treatment of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolism (PE) as well as atrial fibrillation (AF). Heparin can also be used to prevent excess coagulation during procedures such as cardiac surgery, extracorporeal circulation or dialysis, including continuous renal replacement therapy. Heparin administration can be by intravenous (or subcutaneous route. Intravenous heparin is continuously administered for therapeutic anticoagulation, while intermittent subcutaneous administration is used to prevent thromboembolism. Once administered, heparin binds reversibly to antithrombin III (ATIII) and greatly accelerates the rate at which ATIII inactivates coagulation enzymes thrombin (factor IIa) and factor Xa. The heparin-ATIII complex can also inactivate factors IX, XI, XII, and plasmin, but the antithrombotic effect of heparin is well correlated to the inhibition of factor Xa. Typical adverse effects from heparin use include bleeding, thrombocytopenia, injection site reactions, and other adverse effects only seen with chronic heparin administration. Bleeding is a major complication associated with heparin use. Patients should undergo monitoring for new bleeding that may present in the urine or stool. Bleeding may also present as bruising, petechial rash and nosebleeds.
Status:
US Approved Rx
(2020)
Source:
ANDA212060
(2020)
Source URL:
First approved in 1939
Source:
LIQUAEMIN SODIUM by ORGANON USA INC
Source URL:
Class:
POLYMER
Нeparin (or Unfractionated heparin ) is an anticoagulant indicated for both the prevention and treatment of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolism (PE) as well as atrial fibrillation (AF). Heparin can also be used to prevent excess coagulation during procedures such as cardiac surgery, extracorporeal circulation or dialysis, including continuous renal replacement therapy. Heparin administration can be by intravenous (or subcutaneous route. Intravenous heparin is continuously administered for therapeutic anticoagulation, while intermittent subcutaneous administration is used to prevent thromboembolism. Once administered, heparin binds reversibly to antithrombin III (ATIII) and greatly accelerates the rate at which ATIII inactivates coagulation enzymes thrombin (factor IIa) and factor Xa. The heparin-ATIII complex can also inactivate factors IX, XI, XII, and plasmin, but the antithrombotic effect of heparin is well correlated to the inhibition of factor Xa. Typical adverse effects from heparin use include bleeding, thrombocytopenia, injection site reactions, and other adverse effects only seen with chronic heparin administration. Bleeding is a major complication associated with heparin use. Patients should undergo monitoring for new bleeding that may present in the urine or stool. Bleeding may also present as bruising, petechial rash and nosebleeds.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
POLYMER
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
POLYMER
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
POLYMER
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
POLYMER
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
POLYMER
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
POLYMER
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.
Status:
Possibly Marketed Outside US
Source:
Cheon Shim Bo Hwa by Saimdang Cosmetics Co., Ltd
Source URL:
First approved in 1964
Source:
NADA012635
Source URL:
Class:
POLYMER
Conditions:
Tocophersolan (Vedrop, tocofersolan) or d-alpha-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS) is a watersoluble derivative of the natural active (d-alpha) isomer of vitamin E. The active constituent of the medicinal product is essentially vitamin E (alpha tocopherol). Chronic congenital or hereditary cholestasis is a clinical condition where vitamin E deficiency results from an impaired bile secretion. Decreased intestinal absorption observed in chronic congenital or hereditary cholestatic patients is due to decreased bile secretion and the resulting decrease in intestinal cellular absorption. As a result, fatsoluble vitamins (i.e. vit. E) are not absorbed properly and deficiency can occur. Tocophersolan (Vedrop) is used to treat or prevent vitamin E deficiency (low vitamin E levels). It is used in children up to the age of 18 years who have congenital or hereditary chronic cholestasis and who cannot absorb vitamin E from the gut. Tocophersolan (Tocofersolan) can be absorbed from the gut in children who have difficulty absorbing fats and vitamin E from the diet. This can increase vitamin E levels in the blood and help to prevent neurological deterioration (problems in the nervous system) due to vitamin E deficiency. No treatment-related findings were reported, as all clinical observations and findings at autopsy were similar in treatment and control groups. In many of the studies, the LD50 was not
determined as tocofersolan was well tolerated.
Status:
US Approved OTC
Source:
21 CFR 347.10(c) skin protectant calamine
Source URL:
First marketed in 1921
Source:
Saccharated Ferric Oxide N.F.
Source URL:
Class:
G1 SPECIFIED SUBSTANCE
Conditions:
Ferric chloride is a compound used as a food additive, a haemostatic or treatment for hypochromic anaemia. Ferric chloride induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. Iron i.v. ferric chloride (960 mg) has being shown to be effective in correcting anaemia in HD patients with iron deficiency.