{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
CAMOPRIM CT AMODIAQUINE by PD
(1961)
Source URL:
First approved in 1950
Source:
CAMOQUIN HYDROCHLORIDE by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
US Previously Marketed
Source:
Aconitine U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Aconitine is an alkaloid found in the Aconitum species. Aconitine is a highly toxic cardiotoxin and neurotoxin. In China and other countries, the herbal extract containing aconitine was used for the treatment of pain in musculoskeletal disorders, however the safety margin between therapeutic analgesic effect of aconitine and its known cardiotoxic effect is so narrow that the treatment may cause poisoning and death. The mechanism of aconitine action is explained by its ability to activate voltage-dependent sodium-ion channels.
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
US Previously Marketed
Source:
Ammoniated Glycyrrhizin U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Ammoniated Glycyrrhizin U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Potassium Glycyrrhetinate (CAS no. 85985-61-1) is the
potassium salt of Glycyrrhetinic Acid. Potassium Glycyrrhetinate
is also known as Olean-12-En-29-Oic Acid, 3-Hydroxy-1,
1-Oxo-, Monopotassium Salt. Potassium Glycyrrhetinate functions as a flavoring agent and skin-conditioning agent—miscellaneous in cosmetic products.
Status:
US Previously Marketed
Source:
Aconitine U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Aconitine is an alkaloid found in the Aconitum species. Aconitine is a highly toxic cardiotoxin and neurotoxin. In China and other countries, the herbal extract containing aconitine was used for the treatment of pain in musculoskeletal disorders, however the safety margin between therapeutic analgesic effect of aconitine and its known cardiotoxic effect is so narrow that the treatment may cause poisoning and death. The mechanism of aconitine action is explained by its ability to activate voltage-dependent sodium-ion channels.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (EPIMERIC)
Conditions:
Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.