U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1951 - 1960 of 2633 results

Status:
First approved in 1953
Source:
Synthroid Sodium by Travenol
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levothyroxine (T4) is a synthetically prepared levo isomer of thyroxine, the major hormone secreted from the thyroid gland. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine (T3) which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid hormone increases the metabolic rate of cells of all tissues in the body. In the fetus and newborn, thyroid hormone is important for the growth and development of all tissues including bones and the brain. In adults, thyroid hormone helps to maintain brain function, food metabolism, and body temperature, among other effects. The symptoms of thyroid deficiency relieved by levothyroxine include slow speech, lack of energy, weight gain, hair loss, dry thick skin and unusual sensitivity to cold. Levothyroxine acts like the endogenous thyroid hormone thyroxine (T4, a tetra-iodinated tyrosine derivative). In the liver and kidney, T4 is converted to T3, the active metabolite. In order to increase solubility, the thyroid hormones attach to thyroid hormone binding proteins, thyroxin-binding globulin, and thyroxin-binding prealbumin (transthyretin). Transport and binding to thyroid hormone receptors in the cytoplasm and nucleus then takes place. Thus by acting as a replacement for natural thyroxine, symptoms of thyroxine deficiency are relieved. Levothyroxine is used for use alone or in combination with antithyroid agents to treat hypothyroidism, goiter, chronic lymphocytic thyroiditis, myxedema coma, and stupor.
Pyrimethamine, sold under the trade name Daraprim, is one of the folic acid antagonists that is used as an antimalarial or with a sulfonamide to treat toxoplasmosis. In addition it was approved in Chemoprophylaxis of Malaria. However, resistance to pyrimethamine is prevalent worldwide. It is not suitable as a prophylactic agent for travelers to most areas. Pyrimethamine is well absorbed with peak levels occurring between 2 to 6 hours following administration. It is eliminated slowly and has a plasma half-life of approximately 96 hours. Pyrimethamine is 87% bound to human plasma proteins. Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase and the rationale for its therapeutic action is based on the differential requirement between host and parasite for nucleic acid precursors involved in growth. This activity is highly selective against plasmodia and Toxoplasma gondii. Pyrimethamine possesses blood schizonticidal and some tissue schizonticidal activity against malaria parasites of humans. The action of pyrimethamine against Toxoplasma gondii is greatly enhanced when used in conjunction with sulfonamides.
Status:
First approved in 1953
Source:
Synthroid Sodium by Travenol
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levothyroxine (T4) is a synthetically prepared levo isomer of thyroxine, the major hormone secreted from the thyroid gland. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine (T3) which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid hormone increases the metabolic rate of cells of all tissues in the body. In the fetus and newborn, thyroid hormone is important for the growth and development of all tissues including bones and the brain. In adults, thyroid hormone helps to maintain brain function, food metabolism, and body temperature, among other effects. The symptoms of thyroid deficiency relieved by levothyroxine include slow speech, lack of energy, weight gain, hair loss, dry thick skin and unusual sensitivity to cold. Levothyroxine acts like the endogenous thyroid hormone thyroxine (T4, a tetra-iodinated tyrosine derivative). In the liver and kidney, T4 is converted to T3, the active metabolite. In order to increase solubility, the thyroid hormones attach to thyroid hormone binding proteins, thyroxin-binding globulin, and thyroxin-binding prealbumin (transthyretin). Transport and binding to thyroid hormone receptors in the cytoplasm and nucleus then takes place. Thus by acting as a replacement for natural thyroxine, symptoms of thyroxine deficiency are relieved. Levothyroxine is used for use alone or in combination with antithyroid agents to treat hypothyroidism, goiter, chronic lymphocytic thyroiditis, myxedema coma, and stupor.
Status:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Levorphanol, brand name Levo-Dromoran, is an opioid medication used to treat moderate to severe pain. Levorphanol is indicated for the management of moderate to severe pain where an opioid analgesic is appropriate. It is a potent synthetic opioid mu-receptor agonist similar in action to morphine. Like other opioid mu-receptor agonists, it is believed to act at receptors in both the brain and spinal cord to alter the transmission and perception of pain. The onset and peak analgesic effects following administration of levorphanol are similar to morphine when administered at equal analgesic doses. Levorphanol produces a degree of respiratory depression similar to that produced by morphine at equal analgesic doses, and like many opioid mu-receptor agonists, levorphanol produces euphoria or has a positive effect on mood in many individuals.
Status:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Levorphanol, brand name Levo-Dromoran, is an opioid medication used to treat moderate to severe pain. Levorphanol is indicated for the management of moderate to severe pain where an opioid analgesic is appropriate. It is a potent synthetic opioid mu-receptor agonist similar in action to morphine. Like other opioid mu-receptor agonists, it is believed to act at receptors in both the brain and spinal cord to alter the transmission and perception of pain. The onset and peak analgesic effects following administration of levorphanol are similar to morphine when administered at equal analgesic doses. Levorphanol produces a degree of respiratory depression similar to that produced by morphine at equal analgesic doses, and like many opioid mu-receptor agonists, levorphanol produces euphoria or has a positive effect on mood in many individuals.
Pyrimethamine, sold under the trade name Daraprim, is one of the folic acid antagonists that is used as an antimalarial or with a sulfonamide to treat toxoplasmosis. In addition it was approved in Chemoprophylaxis of Malaria. However, resistance to pyrimethamine is prevalent worldwide. It is not suitable as a prophylactic agent for travelers to most areas. Pyrimethamine is well absorbed with peak levels occurring between 2 to 6 hours following administration. It is eliminated slowly and has a plasma half-life of approximately 96 hours. Pyrimethamine is 87% bound to human plasma proteins. Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase and the rationale for its therapeutic action is based on the differential requirement between host and parasite for nucleic acid precursors involved in growth. This activity is highly selective against plasmodia and Toxoplasma gondii. Pyrimethamine possesses blood schizonticidal and some tissue schizonticidal activity against malaria parasites of humans. The action of pyrimethamine against Toxoplasma gondii is greatly enhanced when used in conjunction with sulfonamides.
Pyrimethamine, sold under the trade name Daraprim, is one of the folic acid antagonists that is used as an antimalarial or with a sulfonamide to treat toxoplasmosis. In addition it was approved in Chemoprophylaxis of Malaria. However, resistance to pyrimethamine is prevalent worldwide. It is not suitable as a prophylactic agent for travelers to most areas. Pyrimethamine is well absorbed with peak levels occurring between 2 to 6 hours following administration. It is eliminated slowly and has a plasma half-life of approximately 96 hours. Pyrimethamine is 87% bound to human plasma proteins. Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase and the rationale for its therapeutic action is based on the differential requirement between host and parasite for nucleic acid precursors involved in growth. This activity is highly selective against plasmodia and Toxoplasma gondii. Pyrimethamine possesses blood schizonticidal and some tissue schizonticidal activity against malaria parasites of humans. The action of pyrimethamine against Toxoplasma gondii is greatly enhanced when used in conjunction with sulfonamides.
Acetazolamide, usually sold under the trade name Diamox in some countries. DIAMOX is used for adjunctive treatment of: chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma where delay of surgery is desired in order to lower intraocular pressure. DIAMOX is also indicated for the prevention or amelioration of symptoms associated with acute mountain sickness despite gradual ascent. DIAMOX is an enzyme inhibitor that acts specifically on carbonic anhydrase, the enzyme that catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the secretion of aqueous humor and results in a drop in intraocular pressure, a reaction considered desirable in cases of glaucoma and even in certain non-glaucomatous conditions. Evidence seems to indicate that DIAMOX has utility as an adjuvant in treatment of certain dysfunctions of the central nervous system (e.g., epilepsy). The diuretic effect of DIAMOX is due to its action in the kidney on the reversible reaction involving hydration of carbon dioxide and dehydration of carbonic acid. The result is renal loss of HCO3 ion, which carries out sodium, water, and potassium. It is on the World Health Organization's List of Essential Medicines, a list of the most important medications needed in a basic health system.
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).

Showing 1951 - 1960 of 2633 results