{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2003)
Source:
NDA021567
(2003)
Source URL:
First approved in 2003
Source:
NDA021567
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Atazanavir is the first once-daily protease inhibitor for the treatment of human immunodeficiency virus type 1 infection and should be used only in combination therapy, as part of a highly active antiretroviral therapy (HAART) regimen. In addition to being the most potent protease inhibitor in vitro, atazanavir has a distinct cross-resistance profile that does not confer resistance to other protease inhibitors. However, resistance to other protease inhibitors often confers clinically relevant resistance to atazanavir.
Status:
US Approved Rx
(2018)
Source:
ANDA091168
(2018)
Source URL:
First approved in 2003
Source:
NDA021500
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Emtricitabine was discovered by Emory researchers Dr. Dennis C. Liotta, Dr. Raymond F. Schinazi and Dr. Woo-Baeg Choi and licensed to Triangle Pharmaceuticals by Emory University in 1996. Triangle was acquired by Gilead in 2003. Emtricitabine, marketed by Gilead as Emtriva, was first approved by the U.S. Food and Drug Administration in July 2003 for the treatment of HIV infection in combination with other antiretroviral agents. Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination.
Status:
US Approved Rx
(2019)
Source:
ANDA211041
(2019)
Source URL:
First approved in 2002
Source:
NDA021232
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitisinone, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) is a triketone with herbicidal activity. Orfadin® capsules contain nitisinone used in the treatment of hereditary tyrosinemia type 1 (HT-1). Nitisinone is a competitive inhibitor of 4-hydroxyphenyl-pyruvate dioxygenase, an enzyme
upstream of fumarylacetoacetase in the tyrosine catabolic pathway. By inhibiting the normal
catabolism of tyrosine in patients with HT-1, nitisinone prevents the accumulation of the
catabolic intermediates maleylacetoacetate and fumarylacetoacetate. In patients with HT-1,
these catabolic intermediates are converted to the toxic metabolites succinylacetone and
succinylacetoacetate, which are responsible for the observed liver and kidney toxicity.
Succinylacetone can also inhibit the porphyrin synthesis pathway leading to the accumulation
of 5-aminolevulinate, a neurotoxin responsible for the porphyric crises characteristic of HT-1. Zeneca Agrochemicals and Zeneca Pharmaceuticals made NTBC available for clinical use and, with the approval of the Swedish Medical Products Agency, a seriously ill child with an acute form of tyrosinaemia type 1 was successfully treated in February 1991.
Nitisinone is investigated as a potential treatment for other disorders of tyrosine metabolism including alkaptonuria.
Status:
US Approved Rx
(2002)
Source:
NDA021363
(2002)
Source URL:
First approved in 2001
Source:
NDA021165
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Desloratadine is an active, descarboethoxy metabolite of loratadine. It acts by selective inhibition of H1 histamine receptor and thus provides relief to patients with allergic rhinitis and chronic idiopathic urticaria. Desloratadine was approved by FDA and it is currently marketed under the name Clarinex (among the others).
Status:
US Approved Rx
(2019)
Source:
ANDA208429
(2019)
Source URL:
First approved in 2001
Source:
GLEEVEC by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.
Status:
US Approved Rx
(2019)
Source:
ANDA211769
(2019)
Source URL:
First approved in 2001
Source:
NDA021302
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Pimecrolimus, an ascomycin macrolactam derivative, is an inhibitor of T-cell and mast-cell activation, developed and launched by Novartis for the potential treatment of psoriasis and allergic, irritant and atopic dermatitis. The topical formulation had been launched in the US by February 2002 for mild-to-moderate atopic dermatitis in patients aged two years and older. Pimecrolimus is an immunomodulating agent. The mechanism of action of pimecrolimus in atopic dermatitis is not known. While the following have been observed, the clinical significance of these observations in atopic dermatitis is not known. It has been demonstrated that pimecrolimus binds with high affinity to macrophilin-12 (FKBP-12) and inhibits the calcium dependent phosphatase, calcineurin. Therefore, it inhibits T cell activation by blocking the transcription of early cytokines. In particular, pimecrolimus inhibits at nanomolar concentrations Interleukin-2 and interferon gamma (Th1-type) and Interleukin-4 and Interleukin-10 (Th2-type) cytokine synthesis in human T-cells. In addition, pimecrolimus prevents the release of inflammatory cytokines and mediators from mast cells in vitro after stimulation by antigen/IgE. Following the administration of a single oral radiolabeled dose of pimecrolimus numerous circulating O-demethylation metabolites were seen. Studies with human liver microsomes indicate that pimecrolimus is metabolized in vitro by the CYP3A sub-family of metabolizing enzymes. No evidence of skin mediated drug metabolism was identified in vivo using the minipig or in vitro using stripped human skin.
Status:
US Approved Rx
(2016)
Source:
ANDA205523
(2016)
Source URL:
First approved in 2001
Source:
AXERT by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Almotriptan is a triptan drug for the treatment of migraine headaches. Almotriptan is marketed under the trade name Axert. Almotriptan is used for treating acute migraine headaches with or without aura (eg, dark spots, flashing lights, wavy lines). Almotriptan binds with high affinity to 5-HT1D, 5-HT1B, and 5-HT1F receptors.
Almotriptan has weak affinity for 5-HT1A and 5-HT7 receptors, but has no significant
affinity or pharmacological activity at 5-HT2, 5-HT3, 5-HT4, 5-HT6; alpha or beta
adrenergic; adenosine (A1, A2); angiotensin (AT1, AT2); dopamine (D1, D2);
endothelin (ETA, ETB); or tachykinin (NK1, NK2, NK3) binding sites.
Status:
US Approved Rx
(2000)
Source:
NDA021014
(2000)
Source URL:
First approved in 2000
Source:
NDA021014
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Oxcarbazepine and its active metabolite (10,11-dihydro-10-hydroxy-carbazepine, MHD) have been effective in animal models of epilepsy that generally predict efficacy in generalized tonic-clonic seizures and partial seizures in humans. The pharmacokinetic profile of oxcarbazepine is less complicated than that of carbamazepine, with less metabolism by the cytochrome P450 system, no production of an epoxide metabolite, and lower plasma protein binding. The clinical efficacy and tolerability of oxcarbazepine have been demonstrated in trials in adults, children, and the elderly. The pharmacological activity of oxcarbazepine is primarily exerted through the 10-monohydroxy metabolite (MHD) of oxcarbazepine. The precise mechanism by which oxcarbazepine and MHD exert their antiseizure effect is unknown; however, in vitro electrophysiological studies indicate that they produce blockade of voltage-sensitive sodium channels, resulting in stabilization of hyperexcited neural membranes, inhibition of repetitive neuronal firing, and diminution of propagation of
synaptic impulses. These actions are thought to be important in the prevention of seizure
spread in the intact brain. In addition, increased potassium conductance and modulation of high-voltage activated calcium channels may contribute to the anticonvulsant effects of the drug.
Status:
US Approved Rx
(2019)
Source:
ANDA211040
(2019)
Source URL:
First approved in 1999
Source:
NDA021083
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. It is used in medicine to prevent organ transplant rejection and to treat lymphangioleiomyomatosis. Sirolimus inhibits T-lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (Interleukin [IL]-2, IL-4, and IL-15) stimulation by a mechanism that is distinct from that of other immunosuppressants. Sirolimus also inhibits antibody production. In cells, sirolimus binds to the immunophilin, FK Binding Protein-12 (FKBP-12), to generate an immunosuppressive complex. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Studies in experimental models show that sirolimus prolongs allograft (kidney, heart, skin, islet, small bowel, pancreatico-duodenal, and bone marrow) survival in mice, rats, pigs, and/or primates. Sirolimus reverses acute rejection of heart and kidney allografts in rats and prolongs the graft survival in presensitized rats. In some studies, the immunosuppressive effect of sirolimus lasts up to 6 months after discontinuation of therapy. This tolerization effect is alloantigen-specific. In rodent models of autoimmune disease, sirolimus suppresses immune-mediated events associated with systemic lupus erythematosus, collagen-induced arthritis, autoimmune type I diabetes, autoimmune myocarditis, experimental allergic encephalomyelitis, graft-versus-host disease, and autoimmune uveoretinitis. Lymphangioleiomyomatosis involves lung tissue infiltration with smooth muscle-like cells that harbor inactivating mutations of the tuberous sclerosis complex (TSC) gene (LAM cells). Loss of TSC gene function activates the mTOR signaling pathway, resulting in cellular proliferation and release of lymphangiogenic growth factors. Sirolimus inhibits the activated mTOR pathway and thus the proliferation of LAM cells.
Status:
US Approved Rx
(1999)
Source:
NDA050747
(1999)
Source URL:
First approved in 1999
Source:
SYNERCID by KING PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Quinupristin is an antibiotic compound and a semisynthetic derivative of pristinamycin Ia. Quinupristin is a combination of three peptide macrolactones. Quinupristin is used in combination with dalfopristin, another antibiotic, under the trade name Synercid. Synercid is indicated for treatment of complicated skin and skin structure infections caused by methicillin-susceptible Staphylococcus aureus or Streptococcus pyogenes. The mechanism of action of quinupristin is inhibition of the late phase of protein synthesis in the bacterial ribosome. Quinupristin binds to 23S rRNA within the 50S ribosomal subunit and prevents elongation of the polypeptide as well as causing incomplete chains to be released. Adverse reactions to Synercid include inflammation at infusion site, rash, nausea, vomiting and others.