{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT00914277: Phase 2 Interventional Completed Erectile Dysfunction
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
SAR407899 is a potent, ATP-competitive Rho kinase inhibitor. It antihypertensive action in animals. Sanofi is developing SAR 407899 for the treatment of microvascular angina (Syndrome X). It was previously being developed in clinical trials for the treatment of diabetic neuropathies, diabetic nephropathies, erectile dysfunction, pulmonary hypertension, hypertension and kidney disorders, but development was discontinued for those indications.
Status:
Investigational
Source:
NCT03641313: Phase 2 Interventional Active, not recruiting Clinical Stage III Gastric Cancer AJCC v8
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
VX-970 (VE-822) is an ATR kinase inhibitor. VE-822 decreased maintenance of cell-cycle checkpoints, increased persistent DNA damage and decreased homologous recombination in irradiated cancer cells. Vertex Pharmaceuticals is developing VX 970 for the treatment of advanced solid tumours. Phase I/II development is underway in the US for small-cell lung cancer and in the UK for solid tumours. Phase II development of VX 970 as a combination therapy in urogenital cancer, ovarian, primary peritoneal and fallopian tube cancer indications is underway in the US.
Status:
Investigational
Source:
NCT03025308: Phase 3 Interventional Active, not recruiting Rheumatoid Arthritis
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Filgotinib (GLPG0634) is a highly selective JAK1 inhibitor. GLPG0634 is a promising drug candidate for the future treatment of autoimmune and inflammatory disorders. It is in phase III clinical trials (initiated mid-2016) for the treatment of rheumatoid arthritis, Crohn's disease and ulcerative colitis. Most common adverse events observed were infections, gastrointestinal disorders and nervous system disorders.
Status:
Investigational
Source:
NCT00595829: Phase 1 Interventional Terminated Polycythemia Vera
(2007)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
XL019 is a potent and selective JAK2 inhibitor. XL019 shows 50-fold or greater selectivity for JAK2, versus a panel of over 100 serine/threonine and tyrosine kinases, including other members of the JAK family. XL019 is non-selective for JAK2V617F or wild-type JAK2 and potently inhibits STAT3 and STAT5 phosphorylation in cells harboring either JAK2V617F or wild-type JAK2. Unfortunately, XL019 treatment was associated with the unexpected occurrence of neurotoxicity. Phase I clinical trials have been terminated.
Status:
Investigational
Source:
NCT01167244: Phase 2 Interventional Completed Non-Small-Cell Lung Carcinoma
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
BMS-690514 is a potent, reversible oral inhibitor of epidermal growth factor receptor (EGFR/HER-1), HER-2 and -4, and vascular endothelial growth factor receptors (VEGFRs)-1 to -3 offering targeted inhibition of tumour growth and vascularisation in a single agent. Bristol-Myers Squibb was developing BMS 690514, as an oral treatment for cancer. BMS-690514 had being in phase II for the treatment of breast cancer; non-small cell lung cancer, but later these studies were discontinued.
Status:
Investigational
Source:
NCT01760525: Phase 1 Interventional Completed Solid Tumor With p53 Wild Type Status
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CGM-097, a novel, highly optimized, and selective inhibitor of the p53-Mdm2 interaction. CGM-097 binds to human Mdm2 protein with a Ki value of 1.3 nM, activates p53 in human cells and induces robust p53-dependent cell cycle arrest and apoptosis in human p53 wild-type tumor cells. Its activity and selectivity has been tested and confirmed across a large panel of cancer cell lines from the Cancer Cell Line Encyclopedia. CGM-097 displays desirable pharmacokinetic and pharmacodynamic profiles in animals together with excellent oral bioavailability, which triggers rapid and sustained activation of p53-dependent pharmacodynamic biomarkers resulting in tumor regression in multiple xenografted models of p53 wild-type human cancer. The validation and understanding of its mechanism of action, the overall favorable drug-like properties and the characterization of its on-target toxicological profile in preclinical species strongly supported the initiation of Phase I clinical trials with CGM-097 in pre-selected patients with p53 wild-type tumors.
Status:
Investigational
Source:
NCT02764151: Phase 1 Interventional Terminated Oligodendroglioma
(2016)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
PF-06840003 is a highly selective orally bioavailable Indoleamine 2,3-dioxygenase-1 (IDO-1) inhibitor with a potent antineoplastic activity. PF-06840003 reversed IDO-1-induced T-cell anergy in vitro. In vivo, PF-06840003 reduced intratumoral kynurenine levels in mice by >80% and inhibited tumor growth in multiple preclinical syngeneic models in mice, in combination with immune checkpoint inhibitors. A Phase 1 study of PF-06840003 in patients with Malignant Gliomas is ongoing.
Status:
Investigational
Source:
NCT02471846: Phase 1 Interventional Completed Solid Tumor
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
NLG919 is a novel small-molecule IDO-pathway inhibitor. NLG919 potently inhibits this pathway in vitro and in cell-based assays. It is orally bioavailable and has a favorable pharmacokinetic and toxicity profile. In mice, a single oral administration of NLG919 reduces the concentration of plasma and tissue Kyn by ∼ 50%. Using IDO-expressing human monocyte-derived DCs in allogeneic MLR reactions, NLG919 potently blocked IDO-induced T cell suppression and restored robust T cell responses with an ED50=80 nM. Similarly, using IDO-expressing mouse DCs from tumor-draining lymph nodes, NLG919 abrogated IDO-induced suppression of antigen-specific T cells (OT-I) in vitro. In vivo, in mice bearing large established B16F10 tumors, administration of NLG919 markedly enhanced the anti-tumor responses of naïve, resting pmel-1 cells to vaccination with cognate hgp100 peptide plus CpG-1826 in IFA
Status:
Investigational
Source:
NCT03653546: Phase 2/Phase 3 Interventional Completed Non-small Cell Lung Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
AZD-3759 is an oral inhibitor of both wild-type and mutant EGFR with IC50 values in nanomolar range. The drug was discovered by AstraZeneca for the treatment of non-small-cell lung cancer with CNS metastases. AZD-3759 can penetrate the blood-brain barrier and was confirmed to be effective in vitro with NSCLC cell lines as well as in mouse model of brain metastases. AZD-3759 is currently in Phase 1 clinical trial.
Status:
Investigational
Source:
NCT01217736: Phase 1 Interventional Completed Renal Function
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
VTP-27999 is an alkyl amine renin inhibitor. This compound demonstrated excellent selectivity over related and unrelated off-targets, >15% oral bioavailability in three species, oral efficacy in a double transgenic rat model of hypertension, and good exposure in humans. Vitae Pharmaceuticals was developing VTP 27999 for the treatment of chronic kidney disease. VTP 27999 was in phase I clinical development in the US. However, the product is no more on the company pipeline and it appears that the development has been discontinued.