U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 281 - 290 of 2497 results

Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Dasatinib [BMS 354825] is an orally active, small molecule, dual inhibitor of both SRC and ABL kinases that is under development with Bristol-Myers Squibb for the treatment of patients with chronic myelogenous leukaemia (CML) and imatinib-acquired resistance/intolerance. It’s used for the treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase chronic myeloid leukemia with resistance or intolerance to prior therapy. Also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. While imatinib remains a frontline therapy for CML, patients with advanced disease frequently develop resistance to imatinib therapy through multiple mechanisms. Dasatinib is also undergoing preclinical evaluation for its potential as a therapy against multiple myeloma. Bristol-Myers Squibb has a composition-of-matter patent covering this research approach that will expire in 2020. Dasatinib, at nanomolar concentrations, inhibits the following kinases: BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and PDGFRβ. Based on modeling studies, dasatinib is predicted to bind to multiple conformations of the ABL kinase.
Posaconazole is a triazole antifungal drug that is used to treat invasive infections by Candida species and Aspergillus species in severely immunocompromised patients. It marketed in the United States, the European Union, and in other countries by Schering-Plough under the trade name Noxafil. Noxafil is used for prophylaxis of invasive Aspergillus and Candida infections in patients, 13 years of age and older, who are at high risk of developing these infections due to being severely immunocompromised as a result of procedures such as hematopoietic stem cell transplant (HSCT) recipients with graft-versus-host disease (GVHD), or due to hematologic malignancies with prolonged neutropenia from chemotherapy. Also for the treatment of oropharyngeal candidiasis, including oropharyngeal candidiasis refractory to itraconazole and/or fluconazole. Posaconazole blocks the synthesis of ergosterol, a key component of the fungal cell membrane, through the inhibition of cytochrome P-450 dependent enzyme lanosterol 14α-demethylase responsible for the conversion of lanosterol to ergosterol in the fungal cell membrane. This results in an accumulation of methylated sterol precursors and a depletion of ergosterol within the cell membrane thus weakening the structure and function of the fungal cell membrane. This may be responsible for the antifungal activity of posaconazole. It is absorbed within three to five hours and predominately eliminated through the liver, and has a half-life of about 35 hours. Oral administration of posaconazole taken with a high-fat meal exceeds 90% bioavailability and increases the concentration by four times compared to fasting state.
Ciclesonide is a glucocorticoid receptor agonist indicated for the treatment of allergic rhinitis (Omnaris nasal spray) and asthma (Alvesco). It was also developed by Byk Gulden for chronic obstructive pulmonary disease (COPD), but no development had been reported for this indication since 1999. Ciclesonide is a pro-drug and rapidly metabolized to C21-desisobutyryl-ciclesonide which is more potent toward GR receptor than the parent drug.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Rasagiline (N-propargyl-1-(R)-aminoindan) is a selective, irreversible monoamine oxidase B (MAO B) inhibitor, which has been developed as an anti-Parkinson drug and was sold as a mesylate salt under brand name AZILECT. AZILECT is indicated for the treatment of the signs and symptoms of idiopathic Parkinson’s disease (PD) as initial monotherapy and as adjunct therapy to levodopa. The effectiveness of AZILECT was demonstrated in patients with early Parkinson’s disease who were receiving AZILECT as monotherapy and who were not receiving any concomitant dopaminergic therapy. The effectiveness of AZILECT as adjunct therapy was demonstrated in patients with Parkinson’s disease who were treated with levodopa. PD is a progressive neurodegenerative, dopamine deficiency disorder. The main therapeutic strategies for PD treatment relies on dopamine precursors (levodopa), inhibition of dopamine metabolism (monoamine oxidase [MAO] B and catechol-O-methyl transferase inhibitors), and dopamine receptor agonists. In contrast to selegiline, rasagiline is not metabolized to potentially toxic amphetamine metabolites. The precise mechanisms of action of rasagiline is unknown. One mechanism is believed to be related to its MAO-B inhibitory activity, which causes an increase in extracellular levels of dopamine in the striatum.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Anidulafungin (brand names Eraxis (in U.S. and Russia) and Ecalta (in Europe)) is a semi-synthetic echinocandin with antifungal activity and it is active in vitro against many Candida, as well as some Aspergillus. Like other echinocandins, anidulafungin is not active against Cryptococcus neoformans, Trichosporon, Fusarium, or zygomycetes. This drug is indicated for the treatment of candidemia and the following Candida infections: intra-abdominal abscess and peritonitis; and for the treatment of esophageal candidiasis. Anidulafungin inhibits glucan synthase, an enzyme present in fungal, but not mammalian cells. This results in inhibition of the formation of 1,3--D-glucan, an essential component of the fungal cell wall.
Varenicline is a partial nicotinic acetylcholine receptor agonist, designed to partially activate this system while displacing nicotine at its sites of action in the brain. Varenicline is an alpha-4 beta-2 neuronal nicotinic acetylcholine receptor partial agonist. The drug shows high selectiviyty for this receptor subclass, relative to other nicotinic receptors (>500-fold alpha-3 beta-4, >3500-fold alpha-7, >20,000-fold alpha-1 beta gamma delta) or non-nicotinic receptors and transporters (>2000-fold). The drug competitively inhibits the ability of nicotine to bind to and activate the alpha-4 beta-2 receptor. The drug exerts mild agonistic activity at this site, though at a level much lower than nicotine; it is presumed that this activation eases withdrawal symptoms. Varenicline is sold under the trade name Chantix and Champix, it is indicated for use as an aid to smoking cessation treatment.
Micafungin (trade name Mycamine) is an echinocandin antifungal drug. Micafungin, the active ingredient in Mycamine, inhibits the synthesis of 1,3-β-D-glucan, an essential component of fungal cell walls, which is not present in mammalian cells. Micafungin is indicated for the treatment of candidemia, acute disseminated candidiasis, Candida peritonitis, abscesses and esophageal candidiasis. Possible histamine-mediated symptoms have been reported with Mycamine, including rash, pruritus, facial swelling and vasodilatation.
Conivaptan is an arginine vasopressin (AVP) receptor antagonist with affinity for AVP receptor subtypes V1A and V2. The antidiuretic action of AVP is mediated through activation of the V2 receptor, which functions to regulate water and electrolyte balance at the level of the collecting ducts in the kidney. Conivaptan was approved in 2004 for hyponatremia caused by syndrome of inappropriate antidiuretic hormone. Conicaptan is being evaluated for reduce intracranial pressure in patients with traumatic brain injury, and as a treatment for heart failure.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Deferasirox (marketed as Exjade, Desirox, Deferasirox) is an iron chelator. Its main use is to reduce chronic iron overload in patients who are receiving long term blood transfusions for conditions such as beta-thalassemia and other chronic anemias. It is the first oral medication approved for this purpose in the USA by FDA in November 2005. It is approved in the European Union by the European Medicines Agency (EMA) for children 6 years and older for chronic iron overload from repeated blood transfusions. Deferasirox is highly selective for iron as Fe3+. In approximately 1-year clinical trials of patients with transfusional chronic iron overload associated with beta-thalassaemia, sickle cell disease, myelodysplastic syndrome or other rare chronic anaemias, deferasiroxhad a beneficial effect on liver iron concentrations (LIC) and serum ferritin levels. Deferasirox can cause acute renal failure, fatal in some patients and requiring dialysis in others. It was showed that most fatalities occurred in patients with multiple comorbidities in advanced stages of their hematological disorders.