{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2021)
Source:
ANDA213053
(2021)
Source URL:
First approved in 1987
Source:
BACTROBAN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Mupirocin (BACTROBAN®) is an antibiotic from a strain of Pseudomonas fluorescens. It has shown excellent activity against gram-positive staphylococci and streptococci. The antibiotic is used primarily for the treatment of primary and secondary skin disorders, nasal infections, and wound healing. Mupirocin inhibits bacterial protein synthesis by reversibly and specifically binding to bacterial isoleucyltransfer RNA (tRNA) synthetase. It also severely inhibits RNA synthesis. DNA and cell wall peptidoglycan synthesis are inhibited to a lesser extent and interference with these processes is considered to be a secondary effect. Mupirocin is bactericidal at concentrations achieved by topical administration.
Status:
US Approved Rx
(2020)
Source:
ANDA212041
(2020)
Source URL:
First approved in 1987
Source:
PRINIVIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Lisinopril is a potent, competitive inhibitor of angiotensin-converting enzyme (ACE). Lisinopril is marketed under the brand name ZESTRIL. ZESTRIL is indicated for the treatment of hypertension. It may be used alone as initial therapy
or concomitantly with other classes of antihypertensive agents. It is also indicated as adjunctive therapy in the management of heart failure in patients who
are not responding adequately to diuretics and digitalis. Lisinopril inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE
is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor
substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal
cortex. The beneficial effects of lisinopril in hypertension and heart failure appear to result
primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE
results in decreased plasma angiotensin II which leads to decreased vasopressor activity and to
decreased aldosterone secretion. While the mechanism through which ZESTRIL lowers blood pressure is believed to be primarily
suppression of the renin-angiotensin-aldosterone system, ZESTRIL is antihypertensive even in
patients with low-renin hypertension.
Status:
US Approved Rx
(1990)
Source:
NDA019715
(1990)
Source URL:
First approved in 1987
Source:
NDA019715
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Olsalazine is an anti-inflammatory drug used in the treatment of inflammatory bowel disease such as ulcerative colitis. Orally administered olsalazine is converted to mesalamine which is thought to be the therapeutically active agent in the treatment of ulcerative colitis. The mechanism of action of mesalamine (and sulfasalazine) is unknown but appears to be topical rather than systemic. Mucosal production of arachidonic acid (AA) metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes (LTs) and hydroxyelcosatetraenoic acids (HETEs) is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalamine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin (PG) production in the colon. After oral administration, olsalazine has limited systemic bioavailability. Based on oral and intravenous dosing studies, approximately 2.4% of a single 1.0 g oral dose is absorbed. Less than 1% of olsalazine is recovered in the urine. The remaining 98 to 99% of an oral dose will reach the colon, where each molecule is rapidly converted into two molecules of 5¬ aminosalicylic acid (5-ASA) by colonic bacteria and the low prevailing redox potential found in this environment. The liberated 5-ASA is absorbed slowly resulting in very high local concentrations in the colon. Olsalazine has been evaluated in ulcerative colitis patients in remission, as well as those with acute disease. Both sulfasalazine-tolerant and intolerant patients have been studied in controlled clinical trials. Overall, 10.4% of patients discontinued olsalazine because of an adverse experience compared with 6.7% of placebo patients. The most commonly reported adverse reactions leading to treatment withdrawal were diarrhea or loose stools (olsalazine 5.9%; placebo 4.8%), abdominal pain, and rash or itching (slightly more than 1% of patients receiving olsalazine).
Status:
US Approved Rx
(2021)
Source:
ANDA211775
(2021)
Source URL:
First approved in 1986
Source:
ANDA065129
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of:
Uncomplicated Urinary Tract Infections
Otitis Media
Pharyngitis and Tonsillitis
Acute Exacerbations of Chronic Bronchitis
Uncomplicated Gonorrhea (cervical/urethral)
Status:
US Approved Rx
(2009)
Source:
ANDA078694
(2009)
Source URL:
First approved in 1985
Source:
NDA019270
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Betaxolol or SL 75212, (± )-1-(isopropylamino)-3-(p-(cyclopropylmethoxyethyl-phenoxy)2-propranol, is a potent cardioselective beta1-adrenoceptor antagonist
devoid of intrinsic sympathomimetic activity with very weak local anaesthetic properties. Oral betaxolol has been used for the treatment of essential hypertension. Betaxolol is used topically in glaucoma and ocular hypertension.
Status:
US Approved Rx
(2015)
Source:
NDA206494
(2015)
Source URL:
First approved in 1985
Source:
FORTAZ by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Status:
US Approved Rx
(2000)
Source:
ANDA075479
(2000)
Source URL:
First approved in 1985
Source:
NDA018998
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Status:
US Approved Rx
(2007)
Source:
ANDA065374
(2007)
Source URL:
First approved in 1985
Source:
CEFOTAN by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC-AXIAL)
Conditions:
Cefotetan is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. It is FDA approved for the treatment of urinary tract infection, lower respiratory tract infection, skin and skin structure infections, gynecologic infection, intra-abdominal infection, and bone and joint infection; and for prophylaxis of postoperative infection. The bactericidal action of cefotetan results from inhibition of cell wall synthesis. The methoxy group in the 7-alpha position provides cefotetan with a high degree of stability in the presence of beta-lactamases including both penicillinases and cephalosporinase of gram-negative bacteria. Common adverse reactions include diarrhea and nausea. As with other cephalosporins, high concentrations of cefotetan may interfere with measurement of serum and urine creatinine levels.
Status:
US Approved Rx
(2006)
Source:
ANDA065180
(2006)
Source URL:
First approved in 1984
Source:
ROCEPHIN by HOFFMANN LA ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Status:
US Approved Rx
(2017)
Source:
ANDA206136
(2017)
Source URL:
First approved in 1982
Source:
NDA018147
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Piroxicam is in a class of drugs called nonsteroidal anti-inflammatory drugs (NSAIDs). It was originally brought to market by Pfizer under the tradename Feldene in 1980, became generic in 1992, and is marketed worldwide under many brandnames. Piroxicam works by reducing hormones that cause inflammation and pain in the body. Piroxicam is used to reduce the pain, inflammation, and stiffness caused by rheumatoid arthritis and osteoarthritis. The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. Piroxicam is used for treatment of osteoarthritis and rheumatoid arthritis.