{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Magnesite (magnesium carbonate) is a non-toxic mineral. Magnesium carbonate is an effective phosphate binder for chronic hemodialysis patients. It prevents vascular calcification in these patients. Many patients with heavily symptomatic Mitral valve prolapse syndrome have low serum magnesium, and supplementation of this ion by means of magnesium carbonate leads to improvement in most symptoms.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Status:
US Approved Rx
(2004)
Source:
NDA021468
(2004)
Source URL:
First approved in 2004
Source:
NDA021468
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.