{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Ethyl 4-oxo-1-piperidinecarboxylate is used in organic synthesis. For example, in the synthesis of quinolones with antibacterial activity and DNA-gyrase inhibition properties, as well as in Loperamide synthesis. Ethyl 4-oxo-1-piperidinecarboxylate is a Loratadine impurity (0.01 to 0.8%). Stress studies applied on Loratadine were demonstrated that ethyl 4-oxo-1-piperidinecarboxylate (Impurity H) might represent a degradation byproduct.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.
Status:
US Approved OTC
Source:
21 CFR 331.11(g)(6) antacid:magnesium-containing magnesium hydroxide
Source URL:
First marketed in 1921
Source:
Solution of Magnesium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Magnesium diamide is used as a chemical intermediate. Magnesium diamide is spontaneously combustible. It is toxic by inhalation. Skin or eye contact may cause severe burns.